Answer:
Explanation:
Small-angle grain boundaries are not as effective in interfering with the slip process as are high-angle grain boundaries because there is not as much crystallographic misalignment in the grain boundary region for small-angle, and therefore not as much change in slip direction.
Low angle grain boundaries (quasi-coherent) are formed by the dislocation network positioned along the geometric plane with small tilt angle differences between successive peers that is tilt boundary made up edge dislocations therefore it may only divert the slip direction of the incoming gliding dislocation with very little frictional stresses. And on the other hand, a high angle grain boundary region because of their disordered almost liquid like structure which acts as a strong barrier against dislocation slip motion and causes actually formation of dislocations file-up against it by arresting their motion unless that the stress concentration at the leading dislocation becomes high enough to go though the barrier.
Answer:
pneumatic power system
Explanation:
pneumatic power can be used to quietly operate power windows, door locks, power mirrors, and much much more, also negative pressure pneumatics (vacuum) is used to control many engine and fuel systems
Answer:
coupling is in tension
Force = -244.81 N
Explanation:
Diameter of Hose ( D1 ) = 35 mm
Diameter of nozzle ( D2 ) = 25 mm
water gage pressure in hose = 510 kPa
stream leaving the nozzle is uniform
exit speed and pressure = 32 m/s and atmospheric
<u>Determine the force transmitted by the coupling between the nozzle and hose </u>
attached below is the remaining part of the detailed solution
Inlet velocity ( V1 ) = V2 ( D2/D1 )^2
= 32 ( 25 / 35 )^2
= 16.33 m/s
Answer:
Explanation:if you stretch the hose more tightly the speed of the pulse will reduce..