1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Musya8 [376]
3 years ago
11

A conceptual issue can be resolved by which of the following?

Engineering
1 answer:
Mumz [18]3 years ago
4 0

Answer:

Investigation or empircial research

Explanation:

gimme brainliest pls

You might be interested in
The efficiency of a steam power plant can beincreased by bleeding off some of the steam thatwould normally enter the turbine and
3241004551 [841]

Answer:

Explanation:

This is Answer....

5 0
3 years ago
The wall of drying oven is constructed by sandwiching insulation material of thermal conductivity k = 0.05 W/m°K between thin me
masha68 [24]

Answer:

86 mm

Explanation:

From the attached thermal circuit diagram, equation for i-nodes will be

\frac {T_ \infty, i-T_{i}}{ R^{"}_{cv, i}} + \frac {T_{o}-T_{i}}{ R^{"}_{cd}} + q_{rad} = 0 Equation 1

Similarly, the equation for outer node “o” will be

\frac {T_{ i}-T_{o}}{ R^{"}_{cd}} + \frac {T_{\infty, o} -T_{o}}{ R^{"}_{cv, o}} = 0 Equation 2

The conventive thermal resistance in i-node will be

R^{"}_{cv, i}= \frac {1}{h_{i}}= \frac {1}{30}= 0.033 m^{2}K/w Equation 3

The conventive hermal resistance per unit area is

R^{"}_{cv, o}= \frac {1}{h_{o}}= \frac {1}{10}= 0.100 m^{2}K/w Equation 4

The conductive thermal resistance per unit area is

R^{"}_{cd}= \frac {L}{K}= \frac {L}{0.05} m^{2}K/w Equation 5

Since q_{rad}  is given as 100, T_{o}  is 40 T_ \infty  is 300 T_{\infty, o}  is 25  

Substituting the values in equations 3,4 and 5 into equations 1 and 2 we obtain

\frac {300-T_{i}}{0.033} +\frac {40-T_{i}}{L/0.05} +100=0  Equation 6

\frac {T_{ i}-40}{L/0.05}+ \frac {25-40}{0.100}=0

T_{i}-40= \frac {L}{0.05}*150

T_{i}-40=3000L

T_{i}=3000L+40 Equation 7

From equation 6 we can substitute wherever there’s T_{i} with 3000L+40 as seen in equation 7 hence we obtain

\frac {300- (3000L+40)}{0.033} + \frac {40- (3000L+40)}{L/0.05}+100=0

The above can be simplified to be

\frac {260-3000L}{0.033}+ \frac {(-3000L)}{L/0.05}+100=0

\frac {260-3000L}{0.033}=50

-3000L=1.665-260

L= \frac {-258.33}{-3000}=0.086*10^{-3}m= 86mm

Therefore, insulation thickness is 86mm

8 0
3 years ago
When we utilize a visualization on paper/screen, that visualization is limited to exploring: Group of answer choices Relationshi
Mila [183]

Answer:

As many variables as we can coherently communicate in 2 dimensions

Explanation:

Visualization is a descriptive analytical technique that enables people to see trends and dependencies of data with the aid of graphical information tools. Some of the examples of visualization techniques are pie charts, graphs, bar charts, maps, scatter plots, correlation matrices etc.

When we utilize a visualization on paper/screen, that visualization is limited to exploring as many variables as we can coherently communicate in 2-dimensions (2D).

6 0
3 years ago
g Consider a thin opaque, horizontal plate with an electrical heater on its backside. The front end is exposed to ambient air th
xxTIMURxx [149]

Answer:

The electrical power is 96.5 W/m^2

Explanation:

The energy balance is:

Ein-Eout=0

qe+\alpha sGs+\alpha skyGsky-EEb(Ts)-qc=0

if:

Gsky=oTsky^4

Eb=oTs^4

qc=h(Ts-Tα)

\alpha s=\frac{\int\limits^\alpha _0 {\alpha l Gl} \, dl }{\int\limits^\alpha _0 {Gl} \, dl }

\alpha s=\frac{\int\limits^\alpha _0 {\alpha lEl(l,5800 } \, dl }{\int\limits^\alpha _0 {El(l,5800)} \, dl }

if Gl≈El(l,5800)

\alpha s=(1-0.2)F(0-2)+(1-0.7)(1-F(0-2))

lt= 2*5800=11600 um-K, at this value, F=0.941

\alpha s=(0.8*0.941)+0.3(1-0.941)=0.77

The hemispherical emissivity is equal to:

E=(1-0.2)F(0-2)+(1-0.7)(1-F(0-2))

lt=2*333=666 K, at this value, F=0

E=0+(1-0.7)(1)=0.3

The hemispherical absorptivity is equal to:

qe=EoTs^{4}+h(Ts-T\alpha  )-\alpha sGs-\alpha oTsky^{4}=(0.3*5.67x10^{-8}*333^{4})+10(60-20)-(0.77-600)-(0.3*5.67x10^{-8}*233^{4})=96.5 W/m^{2}

3 0
3 years ago
How could the location of tests affect the performance of a catapult ?
Luba_88 [7]

Answer:

It could affect how far the projectile travels

Explanation:

Facing Uphill: Moves less far

Downhill: Moves further

3 0
3 years ago
Read 2 more answers
Other questions:
  • A 100 kmol/h stream that is 97 mole% carbon tetrachloride (CCL) and 3% carbon disulfide (CS2) is to be recovered from the bottom
    7·1 answer
  • Use the orange points (square symbol) to plot the initial short-run industry supply curve when there are 20 firms in the market.
    5·1 answer
  • A lake with a surface area of 525 acres was monitored over a period of time. During onemonth period the inflow was 30 cfs (ie. f
    5·1 answer
  • You are an engineer at company XYZ, and you are dealing with the need to determine the maximum load you can apply to a set of bo
    13·1 answer
  • A process consists of two steps: (1) One mole of air at T = 800 K and P = 4 bar is cooled at constant volume to T = 350 K. (2) T
    7·1 answer
  • You are given a C program "q2.c" as below. This program is used to calculate the average word length for a sentence (a string in
    5·1 answer
  • Which is the maximum length for any opening on the surface of a 2G SMAW guided bend test specimen?
    11·1 answer
  • Four eight-ohm speakers are connected in parallel to an audio power amplifier. The amplifier can supply a maximum driver output
    12·1 answer
  • 3. A steel pipe of outside diameter 20 mm and thickness 3 mm is
    14·1 answer
  • Plz help If an item is $13.00 for a case of 24, then it is $
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!