Answer:
<em>v</em><em> </em>= T/(2R)
Explanation:
Given
R = radius
T = strength
From Biot - Savart Law
d<em>v</em> = (T/4π)* (d<em>l</em> x <em>r</em>)/r³
Velocity induced at center
<em>v </em>= ∫ (T/4π)* (d<em>l</em> x <em>r</em>)/r³
⇒ <em>v </em>= ∫ (T/4π)* (d<em>l</em> x <em>R</em>)/R³ (<em>k</em>) <em>k</em><em>:</em> unit vector perpendicular to plane of loop
⇒ <em>v </em>= (T/4π)(1/R²) ∫ dl
If l ∈ (0, 2πR)
⇒ <em>v </em>= (T/4π)(1/R²)(2πR) (<em>k</em>) ⇒ <em>v </em>= T/(2R) (<em>k</em>)
Neither of the two technicians (Technician A and Technician B) is correct.
<h3>What is an
engine vacuum?</h3>
An engine vacuum can be defined as a type of engine which is designed and developed to derive its force from air pressure that's being pushed against one side of the piston of an automobile, while having a partial vacuum on the other side.
In this scenario, we can infer and logically conclude that neither of the two technicians (Technician A and Technician B) is correct because engine vacuum is high when the engine is operating under light loads and vice-versa.
Read more on engine vacuum here: brainly.com/question/14602340
#SPJ12