This is best explained through the use of an optics diagram, this is a little too complicated to explain in a short answer, and as I can't draw an appropriate diagram in this answer, I will point you to this excellent resource which explains what you have asked very well!
Go onto the BBC website (you should have access to it even if you aren't in the UK) and paste this after the BBC url,
/bitesize/intermediate2/physics/waves_and_optics/image_formation_from_lens/revision/1/
Answer:
257 kN.
Explanation:
So, we are given the following data or parameters or information in the following questions;
=> "A jet transport with a landing speed
= 200 km/h reduces its speed to = 60 km/h with a negative thrust R from its jet thrust reversers"
= > The distance = 425 m along the runway with constant deceleration."
=> "The total mass of the aircraft is 140 Mg with mass center at G. "
We are also give that the "aerodynamic forces on the aircraft are small and may be neglected at lower speed"
Step one: determine the acceleration;
=> Acceleration = 1/ (2 × distance along runway with constant deceleration) × { (landing speed A)^2 - (landing speed B)^2 × 1/(3.6)^2.
=> Acceleration = 1/ (2 × 425) × (200^2 - 60^2) × 1/(3.6)^2 = 3.3 m/s^2.
Thus, "the reaction N under the nose wheel B toward the end of the braking interval and prior to the application of mechanical braking" = The total mass of the aircraft × acceleration × 1.2 = 15N - (9.8 × 2.4 × 140).
= 140 × 3.3× 1.2 = 15N - (9.8 × 2.4 × 140).
= 257 kN.
Answer:
10 seconds
Explanation:
We have the equation V = at (speed = acceleration x time)
We want to find the time, so can rearrange to T = V/a (time = speed / acceleration).
From the question, we know V is 5 and a is 0.5.
Now we can substitute that into our equation: 5/0.5 = 10.
So the time is 10 seconds.
Hope this helps! Let me know if you have any questions :)
Answer:
Lifting force, F = 21240 N
Explanation:
It is given that,
Mass of the helicopter, m = 1800 kg
It rises with an upward acceleration of 2 m/s². We need to find the lifting force supplied by its rotating blades. It is given by :
F = mg + ma
Where
mg is its weight
and "ma" is an additional acceleration when it is moving upwards.
So, 
F = 21240 N
So, the lifting force supplied by its rotating blades is 21240 N. Hence, this is the required solution.
Answer:
net force
Explanation:
Net force felt by an object.