1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xz_007 [3.2K]
3 years ago
14

The speed of light is 3.0x10^5 km/sec and it takes light 1.3 seconds for light to travel from the moon to earth froim this infor

mation what is the distance to the moon
Physics
1 answer:
Vika [28.1K]3 years ago
5 0
The motion of the light is a uniform motion with constant speed v=3 \cdot 10^5 km/s, therefore we can use the basic relationship between speed, space and time:
v= \frac{S}{t} (1)
where S is the distance covered and t is the time taken. The light takes t=1.3 s to travel from the moon to Earth, therefore by rearranging eq.(1) we can find the distance between the Moon and the Earth:
S=vt=(3 \cdot 10^5 km/s)(1.3 s)=390000 km=3.9 \cdot 10^5 km
You might be interested in
A student standing on a stationary skateboard tosses a textbook with a mass of mb = 1.35 kg to a friend standing in front of him
nataly862011 [7]

Answer:

a) u_c=0\ m.s^{-1}       &        m_c.v_c=m_b.v_b\times \cos\theta

b) v_c=0.0566\ m.s^{-1}

c) p_e=2.9218\ kg.m.s^{-1}

Explanation:

Given:

mass of the book, m_b=1.35\ kg

combined mass of the student and the skateboard, m_c=97\ kg

initial velocity of the book, v_b=4.61\ m.s^{-1}

angle of projection of the book from the horizontal, \theta=28^{\circ}

a)

velocity of the student before throwing the book:

Since the student is initially at rest and no net force acts on the student so it remains in rest according to the Newton's first law of motion.

u_c=0\ m.s^{-1}

where:

u_c= initial velocity of the student

velocity of the student after throwing the book:

Since the student applies a force on the book while throwing it and the student standing on the skate will an elastic collision like situation on throwing the book.

m_c.v_c=m_b.v_b\times \cos\theta

where:

v_c= final velcotiy of the student after throwing the book

b)

m_c.v_c=m_b.v_b\times \cos\theta

97\times v_c=1.35\times 4.61\cos28

v_c=0.0566\ m.s^{-1}

c)

Since there is no movement of the student in the vertical direction, so the total momentum transfer to the earth will be equal to the momentum of the book in vertical direction.

p_e=m_b.v_b\sin\theta

p_e=1.35\times 4.61\times \sin28^{\circ}

p_e=2.9218\ kg.m.s^{-1}

6 0
3 years ago
A cylindrical resistor element on a circuit board dissipates 1.2 W of power. The resistor is 2 cm long, and has a diameter of 0.
34kurt

Answer:

(a) The resistor disspates 103680 joules during a 24-hour period.

(b) The heat flux of the resistor is approximately 4340.589 watts per square meter.

(c) The fraction of heat dissipated from the top and bottom surfaces is 0.045.

Explanation:

(a) The amount of heat dissipated (Q), measured in joules, by the cylindrical resistor is the power multiplied by operation time (\Delta t), measured in hours. That is:

Q = \dot Q \cdot \Delta t (1)

If we know that \dot Q = 1.2\,W and \Delta t = 86400\,s, then the amount of heat dissipated by the resistor is:

Q = (1.2\,W)\cdot (86400\,s)

Q = 103680\,J

The resistor disspates 103680 joules during a 24-hour period.

(b) The heat flux (Q'), measured in watts per square meter, is the heat transfer rate divided by the area of the cylinder (A), measured in square meters:

Q' = \frac{\dot Q}{A} (2)

Q' = \frac{\dot Q}{\frac{\pi}{2}\cdot D^{2}+\pi\cdot D \cdot h } (3)

Where:

D - Diameter, measured in meters.

h - Length, measured in meters.

If we know that \dot Q = 1.2\,W, D = 4\times 10^{-3}\,m and h = 2\times 10^{-2}\,m, the heat flux of the resistor is:

Q' = \frac{1.2\,W}{\frac{\pi}{2}\cdot (4\times 10^{-3}\,m)^{2}+\pi\cdot (4\times 10^{-3}\,m)\cdot (2\times 10^{-2}\,m) }

Q' \approx 4340.589\,\frac{W}{m^{2}}

The heat flux of the resistor is approximately 4340.589 watts per square meter.

(c) Since heat is uniformly transfered, then the fraction of heat dissipated from the top and bottom surfaces (r), no unit, is the ratio of the top and bottom surfaces to total surface:

r = \frac{\frac{\pi}{2}\cdot D^{2}}{A} (3)

If we know that A \approx 2.765\times 10^{-4}\,m^{2} and D = 4\times 10^{-3}\,m, then the fraction is:

r = \frac{\frac{\pi}{2}\cdot (4\times 10^{-3}\,m)^{2} }{2.765\times 10^{-4}\,m^{2}}

r = 0.045

The fraction of heat dissipated from the top and bottom surfaces is 0.045.

7 0
3 years ago
A wave with a greater amplitude will transfer . . . . \
BabaBlast [244]

less mass is more mass but less energy in more mass. less mass has more energy

6 0
3 years ago
If at 10m above the ground an object has 50J of Kinetic Energy, with 50J of Potential Energy. How high can the object travel?
steposvetlana [31]

Hi there!

\large\boxed{\text{B) 20 meters}}

We know that:

E_T = U + K

U = Potential Energy (J)

K = Kinetic Energy (J)

E = Total Energy (J)

At 10m, the total amount of energy is equivalent to:

U + K = 50 + 50 = 100 J

To find the highest point the object can travel, K = 0 J and U is at a maximum of 100 J, so:

100J = mgh

We know at 10m U = 50J, so we can solve for mass. Let g = 10 m/s².

50J = 10(10)m

m = 1/2 kg

Now, solve for height given that E = 100 J:

100J = 1/2(10)h

100J = 5h

<u>h = 20 meters</u>

3 0
2 years ago
A car speeds up from 18.54 m/s to<br> 29.52 m/s in 13.84 s.<br> The acceleration of the car is:
valkas [14]

Answer:

.7934m/s^{2}

Explanation:

Acceleration = change in velocity / change in time

A = 10.98m/s / 13.84s

A = .7934m/s^{2}

5 0
3 years ago
Read 2 more answers
Other questions:
  • Which is an example of sound energy
    12·2 answers
  • Peter throws a snowball at his car parked in the driveway. The snowball disintegrates as it hits the car. By Newton’s third law,
    10·2 answers
  • John rides his motorcycle with a constant speed of 40 miles per hour. How far can he travel in 1/2 an hour?
    14·1 answer
  • Longitudinal waves travel through a series of ___ and ___ PlEASE HELP FAST!!!!!!
    7·1 answer
  • Physical Science Pre-Test 2020-2021 Question: 1-10 The distance between Earth and the Moon was determined by measuring the time
    7·1 answer
  • Plz help!!! A man drives south for 362 s at 45.8 m/s.  How far does he get?<br><br>​
    10·1 answer
  • When the Sun is directly overhead, the intensity of sunlight reaching the ground is about 1000 W/m^{2} 2 . The Earth has a radiu
    12·1 answer
  • What force is needed to accelerate a 2000kg car to 15m/S2
    12·1 answer
  • n a distant solar system, a planet of mass 5.0 x 1024 kg orbits a sun of mass 3.0 x 1030 kg at a constant distance of 2.0 x1011
    5·1 answer
  • P waves can travel through Earth's outer core, but S waves cannot. Because of this, scientists know
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!