It's not really possible to tell longitudinal vs. transverse in this image as given. However, we can say that the waves labeled A are high-frequency (short wavelengths) while the waves labeled B are low-frequency (long wavelengths). So, this third answer choice would be correct here.
Answer:
The 3d and 4s orbitals are completely filled, and the 4p orbital is partially filled.
Explanation:
Explanation:
Given parameters:
Wavelength of photon = 827nm = 827 x 10⁻⁹m
Unknown:
Energy of the photon = ?
Type of radiation = ?
Solution:
The energy of a photon can be derived using the expression below:
E =
h is the Planck's constant = 6.63 x 10⁻³⁴m²kg/s
c is the speed of light = 3 x 10⁸m/s
Insert the parameters and solve;
E =
E = 2.4 x 10⁻¹⁹J
Type of radiation:
Near infrared radiation
<span>BaCl2+Na2SO4---->BaSO4+2NaCl
There is 1.0g of BaCl2 and 1.0g of Na2SO4, which is the limiting reagent?
"First convert grams into moles"
1.0g BaCl2 * (1 mol BaCl2 / 208.2g BaCl2) = 4.8 x 10^-3 mol BaCl2
1.0g Na2SO4 * (1 mol Na2SO4 / 142.04g Na2SO4) = 7.0 x 10^-3 mol Na2SO4
(7.0 x 10^-3 mol Na2SO4 / 4.8 x 10^-3 mol BaCl2 ) = 1.5 mol Na2SO4 / mol BaCl2
"From this ratio compare it to the equation, BaCl2+Na2SO4---->BaSO4+2NaCl"
The equation shows that for every mol of BaCl2 requires 1 mol of Na2SO4. But we found that there is 1.5 mol of Na2SO4 per mol of BaCl2. Therefore, BaCl2 is the limiting reagent.</span>
<span>ANSWER:
Electrical energy accelerates the electrons in the neon gas. The gas ionizes and becomes plasma, containing both positive and negative ions.</span>