Answer:
Assuming rightward is positive, the velocity is positive whenever the car is moving to the right, and the velocity is negative whenever the car is moving to the left. The acceleration points in the same direction as the velocity if the car is speeding up, and in the opposite direction if the car is slowing down.
Explanation:
The change in kinetic energy of the car is equivalent to the change in its potential energy. Thus:
K.E = P.E
1/2 x mΔv² = mgΔh
h = (8.2² - 5²) / 2(9.81)
h = 2.15 meters
Formula for orbital speed, v = √(GM/R)
Where G is the universal gravitational constant, M = Central Mass,
R = Distance between centers of Mass.
Given. v = 68 m/s, M = ? , R = 410 km = 410000 m., G = 6.674 * 10⁻¹¹ Nm²/kg²
68 = √(GM/R)
68 = √(6.674 * 10⁻¹¹ * M/410000)
68² = (6.674 * 10⁻¹¹ * M)/410000
(68² * 410000) / 6.674 * 10⁻¹¹ = M
2.84 × 10¹⁹ = M
Mass of Planet Y = 2.84 × 10¹⁹ kg
Answer:
point of support on which a lever rotates.
Explanation:
The fulcrum is the point of support on which a lever rotates. Fulcrum is a pivotal part of simple machines.
The fulcrum provides the platform for a lever to torque.
- The force that opposes motion by the applied force is termed the frictional force.
- Friction is a force that opposes motion.
- The stored energy of an object is its potential energy.
- The potential energy is the energy due to the position of a body.
- The distance an object moves when doing work is termed its displacement.