1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alenkasestr [34]
1 year ago
6

The distance between adjacent nodes in a standing wave pattern in a length of string is 25.0 cm:A. What is the wavelength of wav

e in the string?B. If the frequency of vibration is 200 Hz, calculate the velocity of the wave.
Physics
1 answer:
mina [271]1 year ago
6 0

A) 50 cm

B) 10000 cm/s

Explanation

Step 1

A)

If you know the distance between nodes and antinodes then use this equation:

\begin{gathered} \frac{\lambda}{2}=D \\ \text{where}\lambda\text{ is the wavelength} \\ D\text{ is the distance betw}een\text{ nodes} \end{gathered}

then, let

D=\text{ 25 cm }

now, replace to find the wavelength

\begin{gathered} \frac{\lambda}{2}=25 \\ \text{Multiply both sides by 2} \\ \frac{\lambda}{2}\cdot2=25\cdot2 \\ \lambda=50\text{ Cm} \end{gathered}

so, the wavelength is

A) 50 cm

Step 2

The speed of a wave can be found using the equation

v=\lambda f

or velocity = wavelength x frequency,

then,let

\begin{gathered} \lambda=50\text{ cm} \\ f=200\text{ Hz} \end{gathered}

replace and evaluate

\begin{gathered} v=\lambda f \\ v=50\text{ cm }\cdot200\text{ HZ} \\ v=10000\text{ }\frac{\text{cm}}{s} \end{gathered}

so

B) 10000 cm/s

I hope this helps you

You might be interested in
Mr. hitch taught us about sedimentary, metamorphic, and igneous rocks. he described how they were formed, what they contain, and
Tems11 [23]
Mr. Hitch taught us about sedimentary, metamorphic, and igneous rocks. He described how they were formed, what they contain, and showed us samples of each. He is a good geologist. 

The missing word and answer is: geologist.
3 0
2 years ago
Different between current and electrons?
BlackZzzverrR [31]

Answer:

Simply,

<u>electrons</u> are "PARTICLES" orbiting the atoms, where, <u>current</u><u> </u>is the FLOW of some (free-to-move-around) electrons in a wire...

3 0
3 years ago
A .5 kg air puck moves to the right at 3 m/s, colliding with a 1.5kg air puck that is moving to the left at 1.5 m/s.
arlik [135]

Answer:

part (a) v = 1.7 m/s towards right direction

part (b) Not an elastic collision

part (c) F = -228.6 N towards left.

Explanation:

Given,

  • Mass of the first puck = m_1\ =\ 5\ kg
  • Mass of the second puck = m_2\ =\ 3\ kg
  • initial velocity of the first puck = u_1\ =\ 3\ m/s.
  • Initial velocity of the second puck = u_2\ =\ -1.5\ m/s.

Part (a)

Pucks are stick together after the collision, therefore the final velocities of the pucks are same as v.

From the conservation of linear momentum,

m_1u_1\ +\ m_2u_2\ =\ (m_1\ +\ m_2)v\\\Rightarrow v\ =\ \dfrac{m_1u_1\ +\ m_2u_2}{m_1\ +\ m_2}\\\Rightarrow v\ =\ \dfrac{5\times 3\ -\ 1.5\times 1.5}{5\ +\ 1.5}\\\Rightarrow v\ =\ 1.7\ m/s.

Direction of the velocity is towards right due to positive velocity.

part (b)

Given,

Final velocity of the second puck = v_2\ =\ 2.31\ m/s.

Let v_1 be the final velocity of first puck after the collision.

From the conservation of linear momentum,

m_1u_1\ +\ m_2u_2\ +\ m_1v_1\ +\ m_2v_2\\\Rightarrow v_1\ =\ \dfrac{m_1u_1\ +\ m_2u_2\ -\ m_2v_2}{m_1}\\\Rightarrow v_1\ =\ \dfrac{5\times 3\ -\ 1.5\times 1.5\ -\ 1.5\times 2.31}{5}\\\Rightarrow v_1\ =\ 1.857\ m/s.

For elastic collision, the coefficient of restitution should be 1.

From the equation of the restitution,

v_1\ -\ v_2\ =\ e(u_2\ -\ u_1)\\\Rightarrow e\ =\ \dfrac{v_1\ -\ v_2}{u_2\ -\ u_1}\\\Rightarrow e\ =\ \dfrac{1.857\ -\ 2.31}{-1.5\ -\ 3}\\\Rightarrow e\ =\ 0.1\\

Therefore the collision is not elastic collision.

part (c)

Given,

Time of impact = t = 25\times 10^{-3}\ sec

we know that the impulse on an object due to a force is equal to the change in momentum of the object due to the collision,

\therefore I\ =\ \ m_1v_1\ -\ m_1u_1\\\Rightarrow F\times t\ =\ m_1(v_1\ -\ u_1)\\\Rightarrow F\ =\ \dfrac{m_1(v_1\ -\ u_1)}{t}\\\Rightarrow F\ =\ \dfrac{5\times (1.857\ -\ 3)}{25\times 10^{-3}}\\\Rightarrow F\ =\ -228.6\ N

Negative sign indicates that the force is towards in the left side of the movement of the first puck.

3 0
2 years ago
A 500 g ball swings in a vertical circle at the end of a 1.4-m-long string. when the ball is at the bottom of the circle, the te
sergij07 [2.7K]

A 500 g ball swings in a vertical circle at the end of a 1.4-m-long string. when the ball is at the bottom of the circle, the tension in the string is 18 n.

6 0
3 years ago
How far will you travel if you run for 10 minutes at 2 m/s?<br><br> SHOW WORK PLZS
ella [17]
10 minutes are the same as 600 seconds.

If you run 2 meters in 1 second then you run 2 * 600 meters in 600 seconds.
7 0
3 years ago
Other questions:
  • MamaMia's Pizza purchases its pizza delivery boxes from a printing supplier. MamaMia's delivers on-average 200 pizzas each month
    15·2 answers
  • Physics. I need help​
    8·1 answer
  • The period of a mechanical wave is 5 seconds. What is the frequency of the wave?
    5·1 answer
  • Sometimes it is very hard to hear in a gymnasium because of echoes . How can you changed it
    10·1 answer
  • What type of objects cannot pull to magmets
    7·2 answers
  • A steel ball rolls with constant velocity on a tabletop 1.95 m high. It rolls off and hits the ground 0.5 m away from the edge o
    8·1 answer
  • A ball is thrown horizontally from a 90 m cliff and strikes the ground 70 m from the base, what is the initial velocity?
    10·1 answer
  • Before the positive psychology movement, psychology focused mainly on
    6·2 answers
  • A truck traveling at a constant speed of 28 m/s passes a more slowly moving car. The instant the truck passes the car, the car b
    13·1 answer
  • 4. Mrs. Parker was married to her husband for
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!