Answer:
28.7664 kJ /mol
Explanation:
The expression for Clausius-Clapeyron Equation is shown below as:

Where,
P is the vapor pressure
ΔHvap is the Enthalpy of Vaporization
R is the gas constant (8.314×10⁻³ kJ /mol K)
c is the constant.
The graph of ln P and 1/T gives a slope of - ΔHvap/ R and intercept of c.
Given :
Slope = -3.46×10³ K
So,
- ΔHvap/ R = -3.46×10³ K
<u>ΔHvap = 3.46×10³ K × 8.314×10⁻³ kJ /mol K = 28.7664 kJ /mol</u>
<u></u>
This is an aplication of Le Chatelier Principle. So, if you need further details about the theory behind the answer, search for this subject.
Here is the answer and the explanation.
You can realize that 1 mol of reactant produce 2 moles of products, which means that the trend of the reaction is to increase the volume (at constant pressure) or to increase the pressure (at constant volume). If you realease the pressure by increasing the volume, Le Chaelier principle permit you to predict a displacement of the equilibrium to the right (to the products). This is, because the equilibrium will try to restore (increase) the pressure by producing more molecules.
So, the answer is the option B. There will be a shift toward the products.
The ocean absorbs CO2 from the atmosphere wherever air meets water. Wind causes waves, giving more opportunity for the water to absorb the carbon dioxide.