Answer:
v₀ = 13.9 10³ m / s
Explanation:
Let's analyze this exercise we can use the basic kinematics relationships to love the initial velocity and the acceleration we can look for from Newton's second law where force is gravitational attraction.
F = m a
G m M / x² = m dv / dt = m dv/dx dx/dt
G M / x² = dv/dx v
GM dx / x² = v dv
We integrate
v² / 2 = GM (-1 / x)
We evaluate between the lower limits where x = Re = 6.37 10⁶m and the velocity v = vo and the upper limit x = 2.50 10⁸m with a velocity of v = 8.50 10³ m/s
½ ((8.5 10³)² - v₀²) = GM (-1 /(2.50 10⁸) + 1 / (6.37 10⁶))
72.25 10⁶ - v₀² = 2 G M (+0.4 10⁻⁸ - 1.57 10⁻⁷)
72.25 10⁶ - v₀² = 2 6.63 10⁻¹¹ 5.98 10²⁴ (-15.3 10⁻⁸)
72.25 10⁶ - v₀² = -1.213 10⁸
v₀² = 72.25 10⁶ + 1,213 10⁸
v₀² = 193.6 10⁶
v₀ = 13.9 10³ m / s
Are you referring to the fact that water is a compound while hydrogen is an element? If I'm wrong just comment and clarify and I can edit it, I don't even know what kind of unit you're in. :)
Deforestation, the chopping off of the trees that can take thousands or even millions of years to grow again<span />
Answer:
please do well to ask questions in English. This will help people provide you answers ASAP. Thank you
Answer:
<em>d. 268 s</em>
Explanation:
<u>Constant Speed Motion</u>
An object is said to travel at constant speed if the ratio of the distance traveled by the time taken is constant.
Expressed in a simple equation, we have:

Where
v = Speed of the object
d = Distance traveled
t = Time taken to travel d.
From the equation above, we can solve for d:
d = v . t
And we can also solve it for t:

Two cars are initially separated by 5 km are approaching each other at relative speeds of 55 km/h and 12 km/h respectively. The total speed at which they are approaching is 55+12 = 67 km/h.
The time it will take for them to meet is:

t = 0.0746 hours
Converting to seconds: 0.0746*3600 = 268.56
The closest answer is d. 268 s