If you'r referring to some objects, it means that the mass of the object is less than the water so it floats. If the mass of an object is greater than the mass of the water, it will sink. Compare it to a balloon, helium makes it rise, while normal air makes it sink.
Answer:
f1 = -3.50 m
Explanation:
For a nearsighted person an object at infinity must be made to appear to be at his far point which is 3.50 m away. The image of an object at infinity must be formed on the same side of the lens as the object.
∴ v = -3.5 m
Using mirror formula,
i/f1 = 1/v + 1/u
Where f1 = focal length of the contact lens, v = image distance = -3.5 m, u = object distance = at infinity(∞) = 1/0
∴ 1/f1 = (1/-3.5) + 1/infinity
Note that, 1/infinity = 1/(1/0) = 0/1 =0.
∴ 1/f1 = 1/(-3.5) + 0
1/f1 = 1/(-3.5)
Solving the equation by finding the inverse of both side of the equation.
∴ f1 = -3.50 m
Therefore a converging lens of focal length f1 = -3.50 m
would be needed by the person to see an object at infinity clearly
Answer:
The correct option is;
a- sea surface temperature anomaly, in degrees Celsius
Explanation:
From the diagram related to the question we have two graphs super imposed of Sea surface temperature anomaly, in degrees Celsius and cholera incidence anomaly (%) both plotted against time in years.
On the left the y-axis represents the sea surface temperature anomaly while on the right, the y-axis represents the cholera incidence anomaly (%).
The display of the graph shows the sea surface temperature anomaly in blue.
Answer:

Explanation:
Given that,
The car traveled a total of 1,200 meters during this test.
We need to find the average speed of the car. The average speed of the car is given by total distance covered divided by the time taken. So,

But putting the value of t we can find the average speed of the car.