Mass of Jupiter=1.9×10
27
㎏=M
1
Mass of Sun=1.99×10
30
㎏=M
2
Mean distance of Jupiter from Sun=7.8×10
11
m=r
G=6.67×10
−11
N㎡㎏
−2
Gravitational Force, F=
r
2
GM
1
M
2
F=
(7.8×10
11
)
2
6.67×10
−11
×1.9×10
27
×1.99×10
30
F=4.16×10
23
N
Answer:
a 
b
Explanation:
Generally the force constant is mathematically represented as

substituting values given in the question
=> 
=> 
Generally the workdone in stretching the spring 3.5 m is mathematically represented as

=> 
=> 
Generally the workdone in compressing the spring 2.5 m is mathematically represented as
=>
=>
Answer:
Earth: 22.246 N
Moon: 3.71 N
Jupiter: 58.72 N
Explanation:
The mass of an object will remain constant in any location, its weight however, can fluctuate depending on its location. For example, a golf ball will weigh less on the moon, but its mass will not be different if it was on earth.
To calculate anything, we need to convert to standard measurements.
5.00 lbs = 2.27 kg
On earth, gravity is measured to be 9.8 m/s², so the weight in Newtons on Earth would be: (2.27 kg) x (9.8 m/s²) = 22.246 N
Repeated on the moon where gravity is (9.8 m/s²) x (1/6) = 1.633 m/s², so the weight in Newtons on the moon would be: (2.27 kg) x (1.633 m/s²) = 3.71 N
Repeated on Jupiter where gravity is (9.8 m/s²) x (2.64) = 25.87 m/s², so the wight in Newtons on Jupiter would be: (2.27 kg) x (25.87 m/s²) = 58.72 N
Answer: 2.83 J/mol
Explanation:
Heat of solution, sometimes interchangeably called enthalpy of solution, is said to be the energy released or absorbed when the solute dissolves in the solvent. A solute is that which can dissolve in a solvent, to form a solution
Given
No of moles of CaCl = 7.5 mol
Total energy used = 21.2 J
Heat of solution = q/n where
q = total energy
n = number of moles
Heat of solution = 21.2 / 7.5
Heat of solution = 2.83 J/mol