
An element is a substance that can't be broken down further. Lithium (Li) and calcium (Ca) are examples of elements.
Carbon monoxide (CO) and potassium bromide (KBr) are examples of compounds, which are made up of more than one element put together.
Answer:
What that means is that when pressure and number of moles are kept constant, increasing the temperature will result in an increase in volume. Likewise, a decrease in temperature will result in a decrease in volume. In your case, the volume of the gas decreased by a factor of about 3, from "140.0 mL" to "50.0 mL".
Answer:
The main difference between the two models is <em>the position of the electron in the atom</em>.
Explanation:
- <em>Bohr model:</em> The electrons are moved around the nucleus in circular definite paths (orbitals or shells). Also, he could not find or detect the exact position of electron.
- <em>Electron cloud model:</em> It is supposed by Erwin Schrodinger. He showed that the emission spectra of the atom is the way to detect the probability of electron position.
This problem is providing information about the initial mass of mercury (II) oxide (10.00 g) which is able to produce liquid mercury (8.00 g) and gaseous oxygen and asks for the resulting mass of the latter, which turns out to be 0.65 g after doing the corresponding calculations.
Initially, it is given a mass of 10.00 g of the oxide and 1.35 g are left which means that the following mass is consumed:

Now, since 8.00 grams of liquid mercury are collected, it is possible to calculate the grams of oxygen that were produced, by considering the law of conservation of mass, which states that the mass of the products equal that of the reactants as it is nor destroyed nor created. In such a way, the mass of oxygen turns out to be:

Learn more: