1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jeka57 [31]
3 years ago
7

The first step when doing an investigation is the observe a situation. True or false?

Physics
2 answers:
liubo4ka [24]3 years ago
8 0
The answer is true. you always need to observe and analyze a situation before taking further action!
Sunny_sXe [5.5K]3 years ago
6 0

Answer:

True! First step is to make objective observations.

You might be interested in
3. A ray of light consisting of blue light (wavelength 480 nm) and red light (wavelength 670 nm) is incident on a thick piece of
Alex Ar [27]

Answer:

The angular separation between the refracted red and refracted blue beams while they are in the glass is 42.555 - 42.283 = 0.272 degrees.

Explanation:

Given that,

The respective indices of refraction for the blue light and the red light are 1.4636 and 1.4561.

A ray of light consisting of blue light (wavelength 480 nm) and red light (wavelength 670 nm) is incident on a thick piece of glass at 80 degrees.

We need to find the angular separation between the refracted red and refracted blue beams while they are in the glass.

Using Snell's law for red light as :

n_1\sin\theta_1=n_2\sin\theta_2\\\\\theta_2=\sin^{-1}((\dfrac{n_2}{n_1})\sin\theta_1)\\\\\theta_2=\sin^{-1}((\dfrac{1}{1.4561})\sin(80))\\\\\theta_2=42.555

Again using Snell's law for blue light as :

n_1\sin\theta_1=n_2\sin\theta'_2\\\\\theta'_2=\sin^{-1}((\dfrac{n_2}{n_1})\sin\theta_1)\\\\\theta'_2=\sin^{-1}((\dfrac{1}{1.4636 })\sin(80))\\\\\theta'_2=42.283

The angular separation between the refracted red and refracted blue beams while they are in the glass is 42.555 - 42.283 = 0.272 degrees.

7 0
3 years ago
According to newtons law of action reaction what is the most likely to occur if to ice skaters with approximately the same mass
Free_Kalibri [48]

Answer:

They would keep on moving but unless being acted upon or stop slowly because of the friction

Explanation:

7 0
3 years ago
Quark gluon plasma (qgp) is what kind of state of matter I.e. it’s equation of state is what?
sladkih [1.3K]

a 10 kg block reaches a point with a velocity of 15 m per second and slides down a rough track my the coefficient of the kinetic energy between the two surface ab and the block iis0.52

5 0
1 year ago
Calculate the pressure exerted on the floor by the boy standing on both feet if the weight of the boy is 40kg. Assume that the a
Jlenok [28]

Answer:

P = 1333.33 N

Explanation:

The pressure exerted by the boy on the floor can be calculated by the following equation:

P = \frac{F}{A}

where,

P = Pressure exerted by the boy = ?

F = Force Applied = Weight of Boy = 40 kg = 40 N (since 1 kg = 1N)

A = Area of application of force = 2(Area of one show) = 2(6 cm x 25 cm)

A = 2(0.06 m x 0.25 m) = 0.03 m²

Therefore,

P = \frac{40\ N}{0.03\ m^2}\\\\

<u>P = 1333.33 N</u>

4 0
3 years ago
X-rays with an energy of 400 keV undergo Compton scattering with a target. If the scattered X-rays are detected at \theta = 30^{
dedylja [7]
<h2>Answer: 37.937 keV</h2>

Explanation:

<u>Photons have momentum</u>, this was proved by he American physicist Arthur H. Compton after his experiments related to the <u>scattering of photons from electrons</u> (Compton Effect or Compton Shift). In addition, energy and momentum are conserved in the process.

In this context, the Compton Shift \Delta \lambda in wavelength when the photons are scattered is given by the following equation:

\Delta \lambda=\lambda' - \lambda_{o}=\lambda_{c}(1-cos\theta)     (1)

Where:

\lambda_{c}=2.43(10)^{-12} m is a constant whose value is given by \frac{h}{m_{e}.c}, being h=4.136(10)^{-15}eV.s the Planck constant, m_{e} the mass of the electron and c=3(10)^{8}m/s the speed of light in vacuum.

\theta=30\° the angle between incident phhoton and the scatered photon.

We are told the scattered X-rays (photons) are detected at 30\°:

\Delta \lambda=\lambda' - \lambda_{o}=\lambda_{c}(1-cos(30\°))   (2)

\Delta \lambda=\lambda' - \lambda_{o}=3.2502(10)^{-13}m   (3)

Now, the initial energy E_{o}=400keV=400(10)^{3}eV of the photon is given by:

 E_{o}=\frac{h.c}{\lambda_{o}}    (4)

From this equation (4) we can find the value of \lambda_{o}:

\lambda_{o}=\frac{h.c}{E_{o}}    (5)

\lambda_{o}=\frac{(4.136(10)^{-15}eV.s)(3(10)^{8}m/s)}{400(10)^{3}eV}    

\lambda_{o}=3.102(10)^{-12}m    (6)

Knowing the value of \Delta \lambda and \lambda_{o}, let's find \lambda':

\Delta \lambda=\lambda' - \lambda_{o}

Then:

\lambda'=\Delta \lambda+\lambda_{o}  (7)

\lambda'=3.2502(10)^{-13}m+3.102(10)^{-12}m  

\lambda'=3.427(10)^{-12}m  (8)

Knowing the wavelength of the scattered photon \lambda'  , we can find its energy E' :

E'=\frac{h.c}{\lambda'}    (9)

E'=\frac{(4.136(10)^{-15}eV.s)(3(10)^{8}m/s)}{3.427(10)^{-12}m}    

E'=362.063keV    (10) This is the energy of the scattered photon

So, if we want to know the energy of the recoiling electron E_{e}, we have to calculate all the energy lost by the photon, which is:

E_{e}=E_{o}-E'  (11)

E_{e}=400keV-362.063keV  

Finally we obtain the energy of the recoiling electron:

E_{e}=37.937keV  

5 0
3 years ago
Other questions:
  • Why do land animals including meat eaters depend on soil
    10·1 answer
  • The average sound intensity inside a busy restaurant is 3.10 10-5 W/m2. How much energy goes into each ear (area = 2.1 10-3 m2)
    12·2 answers
  • What net is required to push a sofa with a mass of 59 kilograms so that it accelerates at 9.75 meters/second^2 (assume a flat,fr
    8·1 answer
  • The side length of a 243-gram copper cube is 3 centimeters. Use this information to write a model for the radius of a copper sph
    8·1 answer
  • Can someone help me dontk
    9·1 answer
  • Please help
    10·1 answer
  • Which two points on the wave shown in the diagram below are in phase with each other?
    14·1 answer
  • A 32 kg object has a momentum of 480 kg m/s northward. What is the
    11·2 answers
  • In the concluding paragraph, how does the author make the conflicting point of view that vegetarianism is strange and unnatural
    9·2 answers
  • I NEED HELP ASAP!!!
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!