Answer: I have more time to think about the wonderful things in life that we don't always appreciate.
Explanation:
Answer:
1) p₀ = 0.219 kg m / s, p = 0, 2) Δp = -0.219 kg m / s, 3) 100%
Explanation:
For the first part, which is speed just before the crash, we can use energy conservation
Initial. Highest point
Em₀ = U = mg y
Final. Low point just before the crash
Emf = K = ½ m v²
Em₀ = Emf
m g y = ½ m v²
v = √ 2 g y
Let's calculate
v = √ (2 9.8 0.05)
v = 0.99 m / s
1) the moment before the crash is
p₀ = m v
p₀ = 0.221 0.99
p₀ = 0.219 kg m / s
After the collision, the car's speed is zero, so its moment is zero.
p = 0
2) change of momentum
Δp = p - p₀
Δp = 0- 0.219
Δp = -0.219 kg m / s
3) the reason is
Δp / p = 1
In percentage form it is 100%
Electric field between the plates of parallel plate capacitor is given as

here area of plates of capacitor is given as


also the maximum field strength is given as

now we will plug in all data to find the maximum possible charge on capacitor plates


so the maximum charge that plate will hold will be given by above
Answer:
the minimum thickness the soap film can be if it is surrounded by air is 85.74 nm
Explanation:
Given the data in the question;
wavelength of light; λ = 463 nm = 463 × 10⁻⁹ m
Index of refraction; n = 1.35
Now, the thinnest thickness of the soap film can be determined from the following expression;
= ( λ / 4n )
so we simply substitute in our given values;
= ( 463 × 10⁻⁹ m ) / 4(1.35)
= ( 463 × 10⁻⁹ m ) / 5.4
= ( 463 × 10⁻⁹ m ) / 4(1.35)
= 8.574 × 10⁻⁸ m
= 85.74 × 10⁻⁹ m
= 85.74 nm
Therefore, the minimum thickness the soap film can be if it is surrounded by air is 85.74 nm