Answer:
U_f = (U_o)/2)
Explanation:
The capacitance of a given capacitor is given by the formula;
C = ε_o•A/d
While energy stored in plates capacitor is given as; U_o = Q²/2C
Now,we are told that that all the dimensions of the capacitor plate is doubled. Thus, we now have;
C' = ε_o•4A/2d
Hence, C' = 2C
so capacitance is now doubled
Thus, the final energy stored between the plates of capacitor is given as;
U_f = Q²/2C'
From earlier, we saw that C' = 2C.
Thus;
U_f = Q²/2(2C)
U_f = Q²/4C
Rearranging, we have;
U_f = (1/2)(Q²/2C)
From earlier, U_o = Q²/2C
Hence,
U_f = (1/2)(U_o)
Or
U_f = (U_o/2)
Predicting the volume of a gas, given its temperature and pressure p<span>roperties.</span>
Answer:
- Fx = -9.15 N
- Fy = 1.72 N
- F∠γ ≈ 9.31∠-10.6°
Explanation:
You apparently want the sum of forces ...
F = 8.80∠-56° +7.00∠52.8°
Your angle reference is a bit unconventional, so we'll compute the components of the forces as ...
f∠α = (-f·cos(α), -f·sin(α))
This way, the 2nd quadrant angle that has a negative angle measure will have a positive y component.
= -8.80(cos(-56°), sin(-56°)) -7.00(cos(52.8°), sin(52.8°))
≈ (-4.92090, 7.29553) +(-4.23219, -5.57571)
≈ (-9.15309, 1.71982)
The resultant component forces are ...
Then the magnitude and direction of the resultant are
F∠γ = (√(9.15309² +1.71982²))∠arctan(-1.71982/9.15309)
F∠γ ≈ 9.31∠-10.6°
Answer:
d=1.25 m
Explanation:
fd=.5mv2-.5mv1; 10(d)=.5(50)(.5)-0; 10(d)=12.5; d=12.5/10; d=1.25 m
Answer:
Conduction is the transfer of thermal energy through direct contact between particles of a substance, without moving the particles to a new location. Usually occurs in solids. When heat is supplied to one end, molecules at that end start to move more quickly.
Explanation: