Complete question:
A diver is 10 m below the surface of water. Calculate the pressure the fluid exerted on the diver. The acceleration of gravity is 9.8 m/s2 and the density of the water is 1000 kg/m3. Answer in units of Pa. Show your work.
Answer:
Tthe pressure the fluid exerted on the diver is 1.99 x 10⁵ Pa
Explanation:
Given;
density of water, ρ = 1000 kg/m³
diver's position below the surface of the water, h = 10 m
acceleration due to gravity, g = 9.8 m/s²
Let the atmospheric pressure, P₀ = 101325 Pa
The pressure 10 m below the surface of the water is calculated as;
P = P₀ + ρgh
P = 101325 Pa + (1000 x 9.8 x 10)Pa
P = 199325 Pa
P = 1.99 x 10⁵ Pa.
Therefore, the pressure the fluid exerted on the diver is 1.99 x 10⁵ Pa
Answer:
"Scientist use radioactive decay to measure the age of a rock or fossil."
Explanation:
"To establish the age of a rock or a fossil, researchers use some type of clock to determine the date it was formed. Geologists commonly use radiometric dating methods, based on the natural radioactive decay of certain elements such as potassium and carbon, as reliable clocks to date ancient events."
As an object falls from rest, its gravitational energy is converted to kinetic energy
G.P.E = K.E = mgh
K.E = (80 Kg)(9.8 m/s²)(30 m)
K.E. = 23,520 J
You get a more low sound.
Conversely, when the wavelength becomes shorter you get a more treble sound.
;-)
The formula is P = E/t, where P means power in watts, E means energy j , and t means time in seconds. This formula states that power is the consumption of energy per unit of time.
P = 15 M / 10*60
M = mega = 10⁶
15 *10⁶ / 600
= 25000 watt