Yes that is correct. We know this because 4.00 x 10 4 Pa is constant. If you have 2.00×10−3m3 then you do the following: (2.00×10^−3)(4.00×10^<span> 4) = </span>8.00×10^−3. That is how you get your answer
Answer:
horizontal component of normal force is equal to the centripetal force on the car
Explanation:
As the car is moving with uniform speed in circle then the force required to move in the circle is towards the center of the circle
This force is due to friction force when car is moving in circle with uniform speed
Now it is given that car is moving on the ice surface such that the friction force is zero now
so here we can say that centripetal force is due to component of the normal force which is due to banked road
Now we have


so we have

so this is horizontal component of normal force is equal to the centripetal force on the car
Answer:
The semi truck travels at an initial speed of 69.545 meters per second downwards.
Explanation:
In this exercise we see a case of an entirely inellastic collision between the semi truck and the car, which can be described by the following equation derived from Principle of Linear Momentum Conservation: (We assume that velocity oriented northwards is positive)
(1)
Where:
,
- Masses of the semi truck and the car, measured in kilograms.
,
- Initial velocities of the semi truck and the car, measured in meters per second.
- Final speed of the system after collision, measured in meters per second.
If we know that
,
,
and
, then the initial velocity of the semi truck is:





The semi truck travels at an initial speed of 69.545 meters per second downwards.
Answer:
The Production Possibilities Curve (PPC) is a model used to show the tradeoffs associated with allocating resources between the production of two goods. The PPC can be used to illustrate the concepts of scarcity, opportunity cost, efficiency, inefficiency, economic growth, and contractions.
Explanation:
I hope this helps
To stop instantly, you would need infinite deceleration. This in turn, requires infinite force, as demonstrable with this equation:F=ma<span>So when you hit a wall, you do not instantly stop (e.g. the trunk of the car will still move because the car is getting crushed). In a case of a change in momentum, </span><span><span>m<span>v⃗ </span></span><span>m<span>v→</span></span></span>, we can use the following equation to calculate force:F=p/h<span>However, because the force is nowhere close to infinity, time will never tend to zero either, which means that you cannot come to an instantaneous stop.</span>