The study of EM is essential to understanding the properties of light, its propagation through tissue, scattering and absorption effects, and changes in the state of polarization. ... Since light travels much faster than sound, detection of the reflected EM radiation is performed with interferometry.
Answer:
vₐ = v_c
Explanation:
To calculate the escape velocity let's use the conservation of energy
starting point. On the surface of the planet
Em₀ = K + U = ½ m v_c² - G Mm / R
final point. At a very distant point
Em_f = U = - G Mm / R₂
energy is conserved
Em₀ = Em_f
½ m v_c² - G Mm / R = - G Mm / R₂
v_c² = 2 G M (1 /R - 1 /R₂)
if we consider the speed so that it reaches an infinite position R₂ = ∞
v_c =
now indicates that the mass and radius of the planet changes slightly
M ’= M + ΔM = M (
)
R ’= R + ΔR = R (
)
we substitute
vₐ =
let's use a serial expansion
√(1 ±x) = 1 ± ½ x +…
we substitute
vₐ = v_ c (
)
we make the product and keep the terms linear
vₐ = v_c
The answer is A: can change
I would say that this is the first law of thermodynamics.
Answer:
205N
Explanation:
The net force (F) is the difference between the applied force(
) and the kinetic frictional force(
). i.e
F =
-
-----------------(i)
Note that;
= μmg
Where;
μ = coefficient of kinetic friction
m = mass of the body
g = acceleration due to gravity = 10m/s²
Equation (i) then becomes;
F =
- μmg -------------------(ii)
<em>Given from question;</em>
m = mass of motorcycle = 150kg
μ = 0.03
= 250N
Substitute these values into equation (ii) as follows;
F = 250 - (0.03 x 150 x 10)
F = 250 - (45)
F = 205N
Therefore, the net force applied to the motorcycle is 205N