Answers:
a) 
b) 
Explanation:
a) Since we are told the satellites circle the space station at constant speed, we can assume they follow a uniform circular motion and their tangential speeds
are given by:
(1)
Where:
is the angular frequency
is the radius of the orbit of each satellite
is the period of the orbit of each satellite
Isolating
:
(2)
Applying this equation to each satellite:
(3)
(4)
(5)
(6)
(7)
(8)
Ordering this periods from largest to smallest:

b) Acceleration
is defined as the variation of velocity in time:
(9)
Applying this equation to each satellite:
(10)
(11)
(12)
(13)
(14)
(15)
Ordering this acceerations from largest to smallest:

Answer:
2 m/s^2, west
Explanation:
Vf=final velcoity
Vi=initial velocity
t=timw

=

= - 2 m/s^2
The - changes direction and makes it opposite
2 m/s, west
Answer:
By conservation of energy, it can climb up to a height equal to that it went down before. However, due to the friction in the machines, the total mechanical energy of the roller coaster will decrease. As a result, the first "hill" of many roller coasters are the highest, but the followings will have decreasing heights.
Explanation:
Material medium electric waves
Answer: 3 m.
Explanation:
Neglecting the mass of the seesaw, in order the seesaw to be balanced, the sum of the torques created by gravity acting on both children must be 0.
As we are asked to locate Jack at some distance from the fulcrum, we can take torques regarding the fulcrum, which is located at just in the middle of the length of the seesaw.
If we choose the counterclockwise direction as positive, we can write the torque equation as follows (assuming that Jill sits at the left end of the seesaw):
mJill* 5m -mJack* d = 0
60 kg*5 m -100 kg* d =0
Solving for d:
d = 3 m.