The gravitational force is inversely proportional to the
square of the distance between their centers. So the
force is greatest when the distance is zero.
Answer:
- 278.34 kg m/s^2
Explanation:
The rate of the change of momentum is the same as the force.
The force that an object feels when moviming in a circular motion is given by:
F = -mrω^2
Where ω is the angular speed and r is the radius of the circumference
Aditionally, the tangential velocity of the body is given as:
v = rω
The question tells us that
v = 25 m/s
r = 7m
mv = 78 kg m/s
Therefore:
m = (78 kg m/s) / (25 m/s) = 3.12 kg
ω = (25 m/s) / (7 m) = 3.57 (1/s)
Now, we can calculate the force or rate of change of momentum:
F = - (3.12 kg) (7 m)(3.57 (1/s))^2
F = - 278.34 kg m/s^2
<span>First, she should put the sample in a test tube and place it in a centrifuge. This would cause the red blood cells to move to the bottom because of their higher density. Next, she would be able to decant the plasma and analyze it separately from the red blood cells.</span>