Answer:
A. There was still 140 ml of volume available for the reaction
Explanation:
According to Avogadro's law, we have that equal volumes of all gases contains equal number of molecules
According to the ideal gas law, we have;
The pressure exerted by a gas, P = n·R·T/V
Where;
n = The number of moles
T = The temperature of the gas
R = The universal gas constant
V = The volume of the gas
Therefore, given that the volumes and number of moles of the removed air and added HCl are the same, the pressure and therefore, the volume available for the reaction will remain the same
There will still be the same volume available for the reaction.
Answer:
Two hydrogen atoms and one oxygen atom (water) was removed.
Explanation:
yw:))
Half-life is the length of time it takes for half of the radioactive atoms of a specific radionuclide to decay. A good rule of thumb is that, after seven half-lives, you will have less than one percent of the original amount of radiation.
<h3>What do you mean by half-life?</h3>
half-life, in radioactivity, the interval of time required for one-half of the atomic nuclei of a radioactive sample to decay (change spontaneously into other nuclear species by emitting particles and energy), or, equivalently, the time interval required for the number of disintegrations per second of a radioactive.
<h3>What affects the half-life of an isotope?</h3>
Since the chemical bonding between atoms involves the deformation of atomic electron wavefunctions, the radioactive half-life of an atom can depend on how it is bonded to other atoms. Simply by changing the neighboring atoms that are bonded to a radioactive isotope, we can change its half-life.
Learn more about half life of an isotope here:
<h3>
brainly.com/question/13979590</h3><h3 /><h3>#SPJ4</h3>
CH₄ + 2O₂ → CO₂ + 2H₂O
From the equation, we know that methane and carbon dioxide have the same number of moles.
no. of moles of CO₂ produced = no. of moles of methane
= 4.5 × 10⁻³ ÷ (12 + 1×4)
= 2.8125 × 10⁻⁴
∴ mass of CO₂ = 2.8125 × 10⁻⁴ × (12 + 16×2)
= 12.375 × 10⁻³ g