Remember that enzymes always accelerate chemical equations, depending on what the enzyme is consisted of. As the enzymes are burned the reaction or amount of chemical reactions decreases.
Answer:
52.17%
Explanation:
COCl2.6H20
C=12,O=16,Cl=35.5,H=1
Relative molecular mass of COCl2.6H2O= 12+16+71+6(2+16) = 99 + 108= 207g
Relative molecular mass of 6H2O = 108g
Percentage of water = (108/207 )*100
= 52.17%
<span>To find the volume of the plate without accounting for the hole firstly
V = (15.0 cm)(12.5 cm)(0.250 cm) = 46.875 cm^3
and the volume of the hole is
(pi)(1.25 cm)^2(0.250 cm) = 1.2272 cm^3
we will subtract the volume of the hole from the rest 45.648 cm^3
the multiply this by the density of the alloy to find the mass
(8.80 g/cm^3)(45.648 cm^3) = 401.701 g.
0.044% of this is Si, so (0.00044)(401.701 g) = 0.17675 g is silicon.
by the number of atoms and using average atomic mass of silicon and Avogadro's number to find the number of silicon atoms:
(0.17675 g)(1 mol/28.0855 g)(6.022E23 atoms/1 mol) =3.794E21atoms of Si
3.10% of these are Si-30:(0.0310)(3.794E18 atoms)=1.176E20 atoms of Si-30 and with two significant figures, 1.2E20 atoms.
hope this helps
</span>
Answer:
Option b. 22 g of He will have the greatest volume at STP
Explanation:
In order to determine the volume, we apply the Ideal Gases Law equation:
P . V = n . R . T
V = n . R . T / P
R, T and P are the same in all the situation we must define n (number of moles).
The one that has the greatest number of moles will have the greatest volume at STP
22 g of Ne . 1mol / 20.1 g = 1.09 moles of Ne
22g of He . 1mol / 4 g = 5.5 moles of He
22 g of O₂ . 1mol / 32g = 0.68 moles of O₂
22 g of Cl₂ . 1mol / 70.9 g = 0.31 moles of Cl₂
Answer is: d. 3,2,3.
Balanced chemical reaction: CH₃CH₂OH + 3O₂ → 2CO₂ + 3H₂O.
CH₃CH₂OH is ethanol.
O₂ is molecule of oxygen.
CO₂ is carbon(IV) oxide.
H₂O is water.
There are same number of atoms (oxygen, carbon and hydrogen) on both side of balanced chemical reaction:
2 atoms of carbon.
6 atoms of hydrogen.
7 atoms of oxygen.