Answer: The molarity of KBr in the final solution is 1.42M
Explanation:
We can calculate the molarity of the KBr in the final solution by dividing the total number of moles of KBr in the solution by the final volume of the solution.
We will first calculate the number of moles of KBr in the individual sample before mixing together
In the first sample:
Volume (V) = 35.0 mL
Concentration (C) = 1.00M
Number of moles (n) = C × V
n = (35.0mL × 1.00M)
n= 35.0mmol
For the second sample
V = 60.0 mL
C = 0.600 M
n = (60.0 mL × 0.600 M)
n = 36.0mmol
Therefore, we have (35.0 + 36.0)mmol in the final solution
Number of moles of KBr in final solution (n) = 71.0mmol
Now, to get the molarity of the final solution , we will divide the total number of moles of KBr in the solution by the final volume of the solution after evaporation.
Therefore,
Final volume of solution (V) = 50mL
Number of moles of KBr in final solution (n) = 71.0mmol
From
C = n / V
C= 71.0mmol/50mL
C = 1.42M
Therefore, the molarity of KBr in the final solution is 1.42M
The scratched tin can with the iron will more rapidly corrode the iron than the tin.
<h3>What is corrosion?</h3>
The corrosion can be given as the process of the oxidation of the metal into the more stable metal oxide. The chemical oxidation of the metal is attained with the surrounding available oxygen or the water vapors.
The reactivity of the Iron for the oxidation is more as compared to the tin from the reactivity series. Therefore if both tin and iron are exposed to corrosion, iron will be more rapidly corroded.
Learn more about corrosion, here:
brainly.com/question/489228
#SPJ1
C. 2 hydrogen (H) atoms because in bonding with them sulfur will get a full valence shell and hydrogen will have a full valence shell.