The kinetic energy of an object is increased by a factor of 4 . By what factor is the magnitude of its momentum changed: 2.
<h3>What is kinetic energy?</h3>
- A particle or an item that is in motion has a sort of energy called kinetic energy. An item accumulates kinetic energy when work, which involves the transfer of energy, is done on it by exerting a net force.
- Kinetic energy comes in five forms: radiant, thermal, acoustic, electrical, and mechanical.
- The energy of a body in motion, or kinetic energy (KE), is essentially the energy of all moving objects. Along with potential energy, which is the stored energy present in objects at rest, it is one of the two primary types of energy.
- Explain that a moving object's mass and speed are two factors that impact the amount of kinetic energy it will possess.
The kinetic energy of an object is increased by a factor of 4 . By what factor is the magnitude of its momentum changed: 2.
To learn more about kinetic energy, refer to:
brainly.com/question/25959744
#SPJ4
Answer:

Explanation:
<u>LC Circuit</u>
It's a special circuit made of three basic elements: The AC source, a capacitor, and an inductor. The charge, current, and voltage are oscillating when there is an interaction between the electric and magnetic fields of the elements. The following variables will be used for the formulas:
= charge of the capacitor in any time 
= initial charge of the capacitor
=angular frequency of the circuit
= current through the circuit in any time 
The charge in an LC circuit is given by

The current is the derivative of the charge

We are given

It means that
![q(t_1) = q_0 \, cos (\omega t_1 )=q_1\ .......[eq 1]](https://tex.z-dn.net/?f=q%28t_1%29%20%3D%20q_0%20%5C%2C%20cos%20%28%5Comega%20t_1%20%29%3Dq_1%5C%20.......%5Beq%201%5D)
![i(t_1) = - \omega q_0 \, sin(\omega t_1)=i_1.........[eq 2]](https://tex.z-dn.net/?f=i%28t_1%29%20%3D%20-%20%5Comega%20q_0%20%5C%2C%20sin%28%5Comega%20t_1%29%3Di_1.........%5Beq%202%5D)
From eq 1:

From eq 2:

Squaring and adding the last two equations, and knowing that


Operating

Solving for 

Now we know the value of
, we repeat the procedure of eq 1 and eq 2, but now at the second time
, and solve for 

Solving for 

Now we replace the given values. We'll assume that the placeholder is a pi for the frequency, i.e.




Finally


The work-energy theorem explains the idea that the net work - the total work done by all the forces combined - done on an object is equal to the change in the kinetic energy of the object. After the net force is removed (no more work is being done) the object's total energy is altered as a result of the work that was done.
This idea is expressed in the following equation:
is the total work done
is the change in kinetic energy
is the final kinetic energy
is the initial kinetic energy
mark me as brainliest ❤️
True, an object at rest stays and rest and an object in motion stays in motion