The gravitation force is quartered when two objects' masses are halved without changing their distance.
Gravitational law states that the force of attraction and repulsion between two objects is directly proportional to the product of their masses and inversely proportional to the square of their distance apart.
F=(KM1 M2)/r^2
K= Gravitation force constant
M1M2 = masses of the object
r = distance between objects
When M1 and M2 are halved, it becomes M1/2 and M2/2
F=(K M1/2 x M2/2)/r^2
F=(K (M1 x M2)/4)/r^2
F=(KM1 x M2)/(4r^2 )
Recall
F=(KM1 x M2)/r^2
Therefore
F=F/4
Learn more about gravitational force here:
brainly.com/question/25408095
#SPJ4
Answer:
Figure A
Explanation:
At first, the inflated balloon is rubbed against the hair.
In this situation, the balloon is charged by friction: because of the friction between the surface of the balllon and the hair, electrons are transferred from the hair to the surface of the balloon.
As a result, when the balloon is detached from the hair, it will have an excess of negative charge (due to the acquired electrons).
Then, the balloon is placed in contact with the non-conducting wall.
The non-conducting wall is initially neutral (equal number of positive and negative charges).
Because the wall is made of a non-conducting material (=isolant), the charges cannot move easily through it. Therefore, even though the charges on the wall feel a force due to the presence of the electrons in the balloon, they will not redistribute along the wall.
Therefore, the charges on the wall will remain equally distributed, as shown in figure A.
Answer:
Time taken = 10400 s
Explanation:
Given:
Initial speed of the train, 
Final speed of the train, 
Displacement of the train, 
Using Newton's equation of motion,

Now, using Newton's equation of motion for displacement,

Now, plug in the value of
in the above equation. This gives,

Now, plug in 234000 m for
, 25 m/s for
and 20 m/s for
. Solve for
.

Therefore, the time taken by the train is 10400 s.
Answer:
Explanation:
Diameter of pool = 12 m
radius of pool, r = 6 m
Total height raised, h = 3 + 2.5 = 5.5 m
density of water, d = 1000 kg/m³
Mass of water, m = Volume of water x density
m = πr²h x d
m = 3.14 x 6 x 6 x 5.5 x 1000
m = 113040 kg
Work = m x g x h
W = 113040 x 9.8 x 5.5
W = 6092856 J