Oxygen and carbon dioxide
Answer:
energy from the sun that reaches earth
P₄O₁₀ + 6H₂O → 4H₃PO₄
The equation shows us that the molar ratio of
P₄O₁₀ : 6H₂O = 1:6
We also know that one mole of a substance contains 6.02 x 10²³ particles. We can use this to calculate the moles of water.
moles(H₂O) = (5.51 x 10²³) / (6.02 x 10²³)
= 0.92 mole
That means moles of P₄O₁₀ = 0.92 / 6
= 0.15
Each mole of P₄O₁₀ contains 4 moles of P.
moles(P) = 4 x 0.15 = 0.6 mol
Mr of P = 207 grams per mol
Mass of P = 207 x 0.6
= 124.2 grams
Answer:
[Ag⁺] = 5.0x10⁻¹⁴M
Explanation:
The product solubility constant, Ksp, of the insoluble salts PbI₂ and AgI is defined as follows:
Ksp(PbI₂) = [Pb²⁺] [I⁻]² = 1.4x10⁻⁸
Ksp(AgI) = [Ag⁺] [I⁻] = 8.3x10⁻¹⁷
The PbI₂ <em>just begin to precipitate when the product [Pb²⁺] [I⁻]² = 1.4x10⁻⁸</em>
<em />
As the initial [Pb²⁺] = 0.0050M:
[Pb²⁺] [I⁻]² = 1.4x10⁻⁸
[0.0050] [I⁻]² = 1.4x10⁻⁸
[I⁻]² = 1.4x10⁻⁸ / 0.0050
[I⁻]² = 2.8x10⁻⁶
<h3>[I⁻] = 1.67x10⁻³</h3><h3 />
So, as the [I⁻] concentration is also in the expression of Ksp of AgI and you know concentration in solution of I⁻ = 1.67x10⁻³M:
[Ag⁺] [I⁻] = 8.3x10⁻¹⁷
[Ag⁺] [1.67x10⁻³] = 8.3x10⁻¹⁷
<h3>[Ag⁺] = 5.0x10⁻¹⁴M</h3>
Answer : 135 grams of sodium has 5.869 moles.
Solution : Given,
Mass of sodium = 135 grams
Molar mass of sodium = 23 g/mole
Formula used :

Now put all the given values in this formula, we get

Therefore, the moles of sodium present in 135 grams of sodium is, 5.869 moles.