Answer:
[1, 6, -2]
Explanation:
Given the following :
Initial Position of spaceship : [3 2 4] km
Velocity of spaceship : [-1 2 - 3] km/hr
Location of ship after two hours have passed :
Distance moved by spaceship :
Velocity × time
[-1 2 -3] × 2 = [-2 4 -6]
Location of ship after two hours :
Initial position + distance moved
[3 2 4] + [-2 4 -6] = [3 + (-2)], [2 + 4], [4 + (-6)]
= [3-2, 2+4, 4-6] = [1, 6, -2]
Answer:
The force is Inertia
Explanation:
The force that acts on an object to move it from rest or a constant straight line motion is known as Inertia.
In physics the above statement is governed by Newton's first law of motion which is also known as Law of Inertia.
This law states that, an object that is at rest will remain at rest and an object that is moving will continue to move in a straight line with constant speed, if and only if the net force acting on the object is zero.
This implies that, A stationary object will remain motionless if no force acts on it while a object with constant velocity will continue moving with constant velocity until a force acts on it (neglecting resistance from air and friction).
The best question that could prompt a scientific investigation is: <u>What substances dissolve in ocean water?</u>
This way the person experimenting can use several variables and make observations. Upon making observations, the person can be able to gather as much data as he can in order to answer the original question that he asked.
Explanation:
The mass written on the periodic table is an average atomic mass taken from all known isotopes of an element. This average is a weighted average, meaning the isotope's relative abundance changes its impact on the final average. The reason this is done is because there is no set mass for an element.
Answer: The correct answers are (A) and (C).
Explanation:
The expression from electrostatic force is as follows;

Here, F is the electrostatic force, k is constant, r is the distance between the charges and
are the charges.
The electrostatic force follows inverse square law. It is inversely proportional to the square of the distance between the charges. It is directly proportional to the product of the charges.
Like charges repel each other. There is a force of electrostatic repulsion between the like charges. Unlike charges attract each other. There is a force of electrostatic attraction between unlike charges.
The charges are induced on the neutral object when it is placed nearby the charged object without actually touching it.
Therefore, the true statements from the given options are as follows;
Like charges repel.
Unlike charges attract.