Answer:
H = 54.37
Explanation:
given,
lead ball attached at = 1.70 m
rate of revolution = 3 revolution/sec
height above the ground = 2 m

circumference of the circle = 2 π r
= 2 x π x 1.7
= 10.68 m

v = 32.04 m/s
using conservation of energy




H = 54.37
the maximum height reached by the ball is equal to H = 54.37
Answer:
(a) The constants required describing the rod's density are B=2.6 and C=1.325.
(b) The mass of the road can be found using 
Explanation:
(a) Since the density variation is linear and the coordinate x begins at the low-density end of the rod, we have a density given by

recalling that the coordinate x is measured in centimeters.
(b) The mass of the rod can be found by having into account the density, which is x-dependent, and the volume differential for the rod:
,
hence, the mass of the rod is 126.6 g.
Potential energy at top:
PE = mgh
PE = 40 x 9.81 x 12
P.E = 4,708.8 J
Kinetic energy at bottom:
KE = 1/2 mv²
KE = 1/2 x 40 x 10²
K.E = 2,000 J
P.E = K.E + Frictional losses
Frictional losses = 4708 - 2000
Frictional losses = 2708 J
The answer is D.
Answer:
borosilicate glass
Explanation:
headlamp glass is a borosilicate glass by gravity feed