When light is incident parallel to the principal axis and then strikes a lens, the light will refract through the focal point on the opposite side of the lens.
To find the answer, we have to know about the rules followed by drawing ray-diagram.
<h3>What are the rules obeyed by light rays?</h3>
- If the incident ray is parallel to the principal axis, the refracted ray will pass through the opposite side's focus.
- The refracted ray becomes parallel to the major axis if the incident ray passes through the focus.
- The refracted ray follows the same path if the incident light passes through the center of the curve.
Thus, we can conclude that, when light is incident parallel to the principal axis and then strikes a lens, the light will refract through the focal point on the opposite side of the lens.
Learn more about refraction by a lens here:
brainly.com/question/13095658
#SPJ1
Answer:
2, 8 and shell
Explanation:
Neon as atomic number 10. Since for each shell, electrons equal 2n².
When n = 1, 2n² = 2(1)² = 2
When n = 2, 2n² = 2(2)² = 8
So it fills both the first and second shell with 2 and 8 electrons respectively to achieve its stable atomic state. The rest of the 8 electrons go into the second shell because the first shell has achieved its stable dual configuration of two electrons. The next shell requires a maximum of 8 electrons to achieve stability so, the remaining electrons fill it up to achieve the stable octet configuration.
Answer:
a) τ = 0.672 N m
, b) θ = 150 rad
, c) W = 100.8 J
Explanation:
a) for this part let's start by finding angular acceleration, when the angular velocity stops it is zero (w = 0)
w = w₀ + α t
α = -w₀ / t
α = 120 / 2.5
α = 48 rad / s²
The moment of inertia of a cylinder is
I = ½ M R²
Let's calculate the torque
τ = I α
τ = ½ M R² α
τ = ½ 2.8 0.1² 48
τ = 0.672 N m
b) we look for the angle by kinematics
θ = w₀ t + ½ α t2
θ = ½ α t²
θ = ½ 48 2.5²
θ = 150 rad
c) work in angular movement
W = τ θ
W = 0.672 150
W = 100.8 J
Explanation:
For air, n1 = 1.00003; for water, n2 = 1.3330
Given: θ2 = 30 degrees, then
θ1 = arcsin [(n2/n1) sin θ2]
= arcsin [(1.3330/1.0003) sin (40)]
= 58.93 degrees
Note that since, in this example, light is traveling from a medium of higher density (water; n2 = 1.3330) to a medium of lower density (air; n1 = 1.0003), then n2 > n1, and the angle of refraction (θ1) is larger than the angle of incidence (θ2), thus the light bends away from the normal (in this example, the vertical) as it leaves the water and enters the air.
Answer:
analog-to-digital
Explanation:
An analog-to-digital converter, or ADC as it is more commonly called, is a device that converts analog signals into digital signals.