Answer:
91.84 m/s²
Explanation:
velocity, v = 600 m/s
acceleration, a = 4 g = 4 x 9.8 = 39.2 m/s^2
Let the radius of the loop is r.
he experiences a centripetal force.
centripetal acceleration,
a = v² / r
39.2 x r = 600 x 600
r = 3600 / 39.2
r = 91.84 m/s²
Thus, the radius of the loop is 91.84 m/s².
From an energy balance, we can use this formula to solve for the angular speed of the chimney
ω^2 = 3g / h sin θ
Substituting the given values:
ω^2 = 3 (9.81) / 53.2 sin 34.1
ω^2 = 0.987 /s
The formula for radial acceleration is:
a = rω^2
So,
a = 53.2 (0.987) = 52.494 /s^2
The linear velocity is:
v^2 = ar
v^2 = 52.949 (53.2) = 2816.887
The tangential acceleration is:
a = r v^2
a = 53.2 (2816.887)
a = 149858.378 m/s^2
If the tangential acceleration is equal to g:
g = r^2 3g / sin θ
Solving for θ
θ = 67°
What are you trying to here?