Answer:
Never pour water into acid but acid into water
Explanation:
If water is poured into extremely concentrated acid/bases, the rate of volatility and exothermic reaction is too rapid and might cause a chemical eruption, leading to acid burns.
Safety precautions hence dictate the reverse is practiced.
I believe this is a clear answer.
C(HClO) = 0,3 M.
<span>V(HClO) = 200 mL = 0,2 L.
n(HClO) = </span>c(HClO) · V(HClO).
n(HClO) = 0,06 mol.<span>
c(KClO</span>) =
0,2 M.
<span>V(KClO) = 0,3 L.
n(KClO) = 0,06 mol.
V(buffer solution) = 0,2 L + 0,3 L = 0,5 L.
ck</span>(HClO) = 0,06 mol ÷ 0,5 L = 0,12 M.
cs(KClO) = 0,06 mol ÷ 0,5 L = 0,12 M.<span>
Ka(HClO</span>) =
2,9·10⁻⁸.<span>
This is buffer solution, so use Henderson–Hasselbalch
equation:
pH = pKa + log(cs</span> ÷ ck).<span>
pH = -log(</span>2,9·10⁻⁸) + log(0,12 M ÷ 0,12 M).<span>
pH = 7,54 + 0.
pH = 7,54</span>
1. when the ball is just starting to fall, it has high potential but low kinetic energy. when it hits the floor, it has high kinetic but low potential energy
2. heat energy
3. reflective-transparent would be best, as they can reflect some light while let other light through, reflective-opaque would be useless in any circumstances because no light at all would be able to get through