funny, actually, i'm a hydraulic, and pneumatic cylinder, pump, and line system mechanic, and the answer is pressure.... pressure builds up from the hydraulic pump, and then transfers through hoses to extend, and contract the cylinders by filling them with hydraulic fluid, and vice versa for contracting them.
hope this helps!
Answer:
The magnitude of the uniform magnetic field exerting this torque on the loop is 1.67 T
Explanation:
Given;
radius of the wire, r = 0.45 m
current on the loop, I = 2.4 A
angle of inclination, θ = 36⁰
torque on the coil, τ = 1.5 N.m
The torque on the coil is given by;
τ = NIBAsinθ
where;
B is the magnetic field
Area of the loop is given by;
A = πr² = π(0.45)² = 0.636 m
τ = NIBAsinθ
1.5 = (1 x 2.4 x 0.636 x sin36)B
1.5 = 0.8972B
B = 1.5 / 0.8972
B = 1.67 T
Therefore, the magnitude of the uniform magnetic field exerting this torque on the loop is 1.67 T
The answer is true because the invention ofthe beto
The object's velocity is decreasing.
Explanation:
From graph is the attached image, we can clearly point that the velocity of this motion is decreasing with time.
Velocity is a vector quantity.
- The y-axis represent displacement.
- The x-axis depicts time
- Using the graph, we know that the slope of the line on the graph gives us the velocity as it denotes the change of displacement with time.
- When we find the slope, it will give us a negative value which shows that the body is slowing down and not increasing speed.
learn more:
Velocity brainly.com/question/4460262
#learnwithBrainly