Something super duper uper stuper luper nuper tuper zuper yuper fuper guper huper kuper juper wuper special
Yes, the volume of the cylinder will remain constant. As the radius decreases, the height will increase to make sure that the volume is kept the same.
We have been given a value of dr/dt and are required to find dh/dt
Because the volume is constant, we can plug it into the formula for the volume of the cylinder and rearrange it to make h the subject:
128 = πr²h
h = 128/πr²
Now we differentiate both sides:
dh/dr = -256/πr³
Applying the chain rule:
dh/dt = dh/dr x dr/dt
dh/dt = (-256/πr³) x -0.05
dh/dt = 64/5πr³; substituting the value of r
dh/dt = 64/5π(1.5)³
dh/dt = 1.21 in/sec
Answer:
58.5 m
Explanation:
First of all, we need to find the total time the ball takes to reach the water. This can be done by looking at the vertical motion only.
The initial vertical velocity of the ball is

where
u = 21.5 m/s is the initial speed
is the angle
Substituting,

The vertical position of the ball at time t is given by

where
h = 13.5 m is the initial heigth
is the acceleration of gravity (negative sign because it points downward)
The ball reaches the water when y = 0, so

Which gives two solutions: t = 3.27 s and t = -0.84 s. We discard the negative solution since it is meaningless.
The horizontal velocity of the ball is

And since the motion along the horizontal direction is a uniform motion, we can find the horizontal distance travelled by the ball as follows:

Mamie Phipps Clark is a noted woman psychologist, best known for her research on race, self-esteem, and child development. Her work alongside her husband, Kenneth Clark, was critical in the 1954 Brown vs Board of Education case and she was the first black woman to earn a degree from Columbia University.
Answer:
Sedimentary rocks are usually formed under water when grains of broken rocks are glued together while igneous rocks form when melted rock (magma or lava) cools and metamorphic are rocks that once were igneous or sedimentary rocks but have been changed by pressure and temperature.