The magnitude of the electric field on the master charge is 1.008 x 10¹⁰ N/C, and the force on the test charge is 5.04 x 10⁹ N.
<h3>Electric field on the master charge</h3>
E = kq/r²
where;
- q is magnitude of master charge
- r is distance of separation
- k is Coulomb's constant
E = (9 x 10⁹ x 0.63)/(0.75²)
E = 1.008 x 10¹⁰ N/C
<h3>Force on the test charge</h3>
F = Eq
where;
- E is electric field
- q is the test charge
F = (1.008 x 10¹⁰) x (0.5)
F = 5.04 x 10⁹ N
Thus, the magnitude of the electric field on the master charge is 1.008 x 10¹⁰ N/C, and the force on the test charge is 5.04 x 10⁹ N.
Learn more about electric field here: brainly.com/question/14372859
#SPJ1
To bring something to a stop the same force that was applied to speed it up can be used to stop it. If a greater force is used it will stop quicker.
Answer:
a = w² r
Explanation:
In this exercise, indicate that the wheel has angular velocity w, the worm experiences the same angular velocity if it does not move, and has an acceleration towards the center of the circle, according to Newton's second law, called the centripetal acceleration.
a = v² / r
angular and linear variables are related
v = w r
we substitute
a = w² r
where r is the radius of the wheel
Answer:
The second ball hits at the same time.
Distance travelled is 65 meters
Explanation: