Note that we are omitting the water.
So, sodium carbonate will basically dissociate into positive sodium ions and negative carbonate ions based on the following equation:
<span>Na2CO3 → 2 Na(+) + CO3(2-)
</span>
If we took water into consideration:
Sodium carbonate will dissociate in water forming carbonic acid and sodium hydroxide. Since sodium hydroxide is a strong base, therefore, it will then neutralize the gastric acid, thus, acting as an antacid.
Use apex learning for homework! Gives you all the answers and step by step help
Answer:
[O₃]= 8.84x10⁻⁷M
Explanation:
<u>The photodissociation of ozone by UV light is given by:</u>
O₃ + hν → O₂ + O (1)
<u>The first-order reaction of the equation (1) is:</u>
(2)
<em>where k: is the rate constant and Δ[O₃]/Δt: is the variation in the ozone concentration with time, and the negative sign is by the decrease in the reactant concentration </em>
<u>We can get the following expression of the </u><u>first-order integrated law</u><u> of the reaction (1), by resolving the equation (2):</u>
(3)
<em>where [O₃](t): is the ozone concentration in the elapsed time and [O₃]₀: is the initial ozone concentration</em>
We can calculate the initial ozone concentration using equation (3):
So, the ozone concentration after 10 days is 8.84x10⁻⁷M.
I hope it helps you!
<u>Answer:</u> The fraction of atom's mass contributed by nucleus is 0.99
<u>Explanation:</u>
Nucleons are defined as the sub-atomic particles which are present in the nucleus of an atom. Nucleons are protons and neutrons.
The isotopic symbol of Helium-4 atom is 
Number of electrons = 2
Number of protons = 2
Number of neutrons = 4 - 2 = 2
We are given:
Mass of He-4 atom = 
Mass of 1 electron = 
Calculating the mass contributed by the nucleus = 
Mass of the nucleus of He-4 atom = 
To calculate the fraction of atom's mass contributed by the nucleus, we use the equation:

Putting values in above equation, we get:

Hence, the fraction of atom's mass contributed by nucleus is 0.99
Answer:
33.7
Explanation:
i just know i had a question on it'