To get the answer you use the Law of Raoult.
Raoult's law states that the decrease of the vapor pressure of a liquid is proportional to the molar fraction of the solute.
ΔP = Pa * Xa
Here Pa = 0.038 atm
And Xa = N a / (Na + Nb), where Na is number of moles of A and Nb is number of moles of b
Na = mass of urea / molar mass of urea = 60 g / (molar mass of CH4N2O)
molar mass of CH4N2O = 12 g/mol + 4*1g/mol + 2*14 g/mol + 16 g/mol = 60 g/mol
Na = 60 g / 60 g/mol = 1 mol
Nb = mass of water / molar mass of water = 180g / 18g/mol = 10 mol
Xa = 1 mol / (10 mol + 1 mol) = 1/11 =0.09091
ΔP = Pb * Xa = 0.038 atm * 0.09091 = 0.0035 atm
Then, the final vapor pressure of water is Pb - ΔP = 0.038atm - 0.0035atm = 0.035 atm.
Answer: 0.035 atm
I believe the answer I’d D
Hope it helps
Answer:
Carbon is made up of one type of atom.
Explanation:
Hope this helps!
Answer:
The molar concentration of Cu²⁺ in the initial solution is 6.964x10⁻⁴ M.
Explanation:
The first step to solving this problem is calculating the number of moles of Cu(NO₃)₂ added to the solution:

n = 1.375x10⁻⁵ mol
The second step is relating the number of moles to the signal. We know the the n calculated before is equivalent to a signal increase of 19.9 units (45.1-25.2):
1.375x10⁻⁵ mol _________ 19.9 units
x _________ 25.2 units
x = 1.741x10⁻⁵mol
Finally, we can calculate the Cu²⁺ concentration :
C = 1.741x10⁻⁵mol / 0.025 L
C = 6.964x10⁻⁴ M