Answer:
Mass = 15.1 g
Explanation:
Given data:
Number of moles of NaBH₄ = 0.40 mol
Mass in gram = ?
Solution:
Formula:
Mass = number of moles × molar mass
Molar mass of NaBH₄ = 37.83 g/mol
By putting values,
Mass = 0.40 mol × 37.83 g/mol
Mass = 15.1 g
Answer:
case1.
The addition of acid and base leads to a change in pH of the water when adding to deionized water due to fact that acid and bases dissociated in dissolving in water. If the H+ ion increases in the water as acid addition hikes it, it will result in decreasing the pH value. The intensity of the acid also affects the dissociation of the ions.
case2
Buffers are normally formed by weak acid and its conjugate base, and adding acid to the buffer it absorbs the H+ ions so the pH will be lower and adding base or increase of OH- conjugate base resists the pH value to increase.
Separa los metales de los no metales. Agregame como amiga, saludos.
Answer:
The answer is A. a wave of vibrating electric and magnetic energy.
Concentration = 2.14 âś• 10-2 m
For [Br-], there are 2 ions so 2 x 2.14 x 10^-2 =4.28 x 10^-2
Ksp = [Pb][Br]^2 = 2.14 âś• 10-2 x (4.28 x 10^-2 )^2 = 39.20 x 10^-6
Ksp = 3.92 x 10^-5