Answer: For #1 I'm going to go with A because that has to do with biology
For #2 I'm going to go with B oceans because that has to do with plant life (and life in general).
For #3 I'll say marine/maritime engineer (you can just say marine)
Hope it helps!
Explanation:
Step1
In the stress-strain curve of any material, the yield stress is the maximum stress at which material starts yielding.
Step2
Young’s modulus is the constant of proportionality of stress and strain according to hooks law. It is the slope of the slope of the stress-strain curve of the any material under proportional limit.
Step3
Ultimate tensile stress is the maximum stress that induced in the material under application of load.
Step4
Toughness is the strain energy per unit volume up to the fracture point of the stress-strain diagram of any material. This is the area under the curve of stress-strain.
Step5
Point of necking is the point where any material starts necking under application of load in necking region of the stress-strain curve.
Step6
Fracture point is the last point of the stress-strain curve where component fractures under application of load.
All the parameters are shown in below stress-strain curve:
Answer:
the action or process of differentiating or distinguishing between two or more things or people.
Answer:
a)Are generally associated with factor.
Explanation:
We know that losses are two types
1.Major loss :Due to friction of pipe surface
2.Minor loss :Due to change in the direction of flow
As we know that when any hindrance is produced during the flow of fluid then it leads to generate the energy losses.If flow is along uniform diameter pipe then there will not be any loss but if any valve and fitting placed is the path of fluid flow due to this direction of fluid flow changes and it produce losses in the energy.
Lot' of experimental data tell us that loss in the energy due to valve and fitting are generally associated with K factor.These losses are given as

The rate of gain for the high reservoir would be 780 kj/s.
A. η = 35%

W = 
W = 420 kj/s
Q2 = Q1-W
= 1200-420
= 780 kJ/S
<h3>What is the workdone by this engine?</h3>
B. W = 420 kj/s
= 420x1000 w
= 4.2x10⁵W
The work done is 4.2x10⁵W
c. 780/308 - 1200/1000
= 2.532 - 1.2
= 1.332kj
The total enthropy gain is 1.332kj
D. Q1 = 1200
T1 = 1000

<h3>Cournot efficiency = W/Q1</h3>
= 1200 - 369.6/1200
= 69.2 percent
change in s is zero for the reversible heat engine.
Read more on enthropy here: brainly.com/question/6364271