To solve this problem it is necessary to apply the concepts related to wavelength depending on the frequency and speed. Mathematically, the wavelength can be expressed as

Where,
v = Velocity
f = Frequency,
Our values are given as
L = 3.6m
v= 192m/s
f= 320Hz
Replacing we have that


The total number of 'wavelengths' that will be in the string will be subject to the total length over the size of each of these undulations, that is,



Therefore the number of wavelengths of the wave fit on the string is 6.
Answer:
29.4 N/m
0.1
Explanation:
a) From the restoring Force we know that :
F_r = —k*x
the gravitational force :
F_g=mg
Where:
F_r is the restoring force .
F_g is the gravitational force
g is the acceleration of gravity
k is the constant force
xi , x2 are the displacement made by the two masses.
Givens:
<em>m1 = 1.29 kg</em>
<em>m2 = 0.3 kg </em>
<em>x1 = -0.75 m </em>
<em>x2 = -0.2 m </em>
<em>g = 9.8 m/s^2 </em>
Plugging known information to get :
F_r =F_g
-k*x1 + k*x2=m1*g-m2*g
k=29.4 N/m
b) To get the unloaded length 1:
l=x1-(F_1/k)
Givens:
m1 = 1.95kg , x1 = —0.75m
Plugging known infromation to get :
l= x1 — (F_1/k)
= 0.1
A closed circle means the number is included and an open circle means its not.
Answer:
Ideal mechanical advantage of the lever is 3.
Explanation:
Given that,
The distance between the levers input force and the fulcrum is 8 cm, 
The distance between the fulcrum and the output force is 24 cm, 
To find,
The ideal mechanical advantage of the lever.
Solution,
The ratio of the distance between the fulcrum and the output force to the distance between the levers input force and the fulcrum is called the ideal mechanical advantage of the lever. It is given by :


m = 3
So, the ideal mechanical advantage of the lever is 3.