1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna11 [10]
3 years ago
10

A 1.0 kg block is attached to an unstretched

Physics
1 answer:
KonstantinChe [14]3 years ago
4 0

Answer:

Change in  potential energy of the block-spring-Earth

system between Figure 1 and Figure 2 = 1 Nm.

Explanation:

Here, spring constant, k  = 50 N/m.

given block comes down eventually 0.2 m below.

here, g = 10 m/s.

let block be at a height h above the ground in figure 1.

⇒In figure 2, potential energy of the block-spring-Earth

system = m×g×(h - 0.2) + 1/2× k × x². where, x = change in spring length.

⇒ Change in  potential energy of the block-spring-Earth

system between Figure 1 and Figure 2 = (m×g×(h - 0.2)) - (1/2× k × x²)

              =  (1×10×0.2) - (1/2×50×0.2×0.2) = 1 Nm.

You might be interested in
A 40-W lightbulb is 1.7 m from a screen. What is the intensity of light incident on the screen? Assume that a lightbulb emits ra
Sonja [21]

Answer:

Intensity, I=1.101\ W/m^2

Explanation:

Power of the light bulb, P  = 40 W

Distance from screen, r = 1.7 m

Let I is the intensity of light incident on the screen. The power acting per unit area is called the intensity of the light. Its formula is given by :

I=\dfrac{P}{A}

I=\dfrac{P}{4\pi r^2}

I=\dfrac{40\ W}{4\pi (1.7\ m)^2}

I=1.101\ W/m^2

So, the intensity of light is 1.101\ W/m^2.

6 0
4 years ago
A proton in a cyclotron is moving with a speed of 2.97×107 m/s in a circle of radius 0.568 m. 1.67 × 10−27 kg is the mass of the
vivado [14]

Answer:

B = 0.546 T,  F = 2.59 10⁻¹² N

Explanation:

The magnetic force is

            F = q v x B

We can calculate the magnitude of the force and find the direction by the right hand rule

          F = q v B sin θ

Let's use Newton's second law

         F = m a

Acceleration is centripetal

         a = v² / r

We substitute

       q v B sin θ = m v² / r

The angle between the field and the radius of the circle is 90º so sin 90 = 1

        q B = m v / r

        B = m v / q r

Let's calculate ’

       B = 1.67 10⁻²⁷ 2.97 10⁷ / (1.60 10⁻¹⁹ 0.568)

        B = 0.546 T

The foce is

         F = q v B

         F = 1.60 10⁻¹⁹ 2.97 10⁷ 0.546

         F = 2.59 10⁻¹² N

3 0
3 years ago
A hot air balloon rising vertically is tracked by an observer located 3 miles from the lift-off point. At a certain moment, the
yuradex [85]

Answer:

\frac{dy}{dt}=1.2\frac{mi}{min}

Explanation:

We know that the tangent function relates the angle of the right triangle that forms the hot air balloon rising:

tan\theta=\frac{y}{x}\\y=xtan\theta(1)

Differentiating (1) with respect to time, we get:

\frac{dy}{dt}=tan\theta\frac{dx}{dt}+xsec^{2}\theta\frac{d\theta}{dt}\\

\frac{dx}{dt}=0 since x is a constant value. Replacing:

\frac{dy}{dt}=3mi(sec^{2}\frac{\pi}{3})0.1\frac{rad}{min}\\\frac{dy}{dt}=1.2\frac{mi}{min}

5 0
4 years ago
A particle whose speed is 50 m/sec moves along the line from A(2,1) to B (9,25)
WINSTONCH [101]

First, calculate for the distance between the given points A and B by using the equation,

<span>                                                D = sqrt ((x2 – x1)2 + (y2 – y1)2)</span>

 

Substitute the known values:

<span>                                                D = sqrt((9 – 2)2 + (25 – 1)2)</span>

<span>                                                D = 25 m</span>

 

I assume the unknown here is the time it would require for the particle to move from point A to B. This can be answered by dividing the calculated distance by the speed given above.

<span>                                                t = (25 m)/ (50 m/s) = 0.5 s</span>

 

<span>Thus, it will take 0.5s for the particle to complete the route. </span>

3 0
3 years ago
Which term describes the time it takes for an object to complete one full cycle of motion on a spring?
Sav [38]

The term period (symbol: T) describes the time it takes for an object to complete one full cycle of motion on a spring.

The formula for time is: T  = 1 / f , where f is the frequency  , f= c / λ = wave speed c (m/s) / wavelength λ (m)..

The formula describes that as the frequency of a wave increases, the time period of the wave decreases.

4 0
3 years ago
Read 2 more answers
Other questions:
  • Which statement represents a healthy choice for a pregnant woman? A mother eats twice as much to support her growing fetus. A mo
    6·2 answers
  • According to the what the universe's total amount of energy does not change
    12·1 answer
  • HELP How many electrons can exist in the second shell surrounding an atomic nucleus?
    5·2 answers
  • A truck covers 40.0 m in 7.50 s while uniformly slowing down to a final velocity of 2.55 m/s. (a) Find the truck's original spee
    14·1 answer
  • Determine the slit width that produces a diffraction pattern with the 2nd dark fringe at 6.2mm from the central fringe. The scre
    6·1 answer
  • If the net force on a chair is 6 newtons to the right, what will occur? *
    12·1 answer
  • Georgia drops a brick from the top of an 80.0 m building. What is the velocity of the brick when it hits the ground?
    11·1 answer
  • john gottman, the eminent marriage counselor put the number of conflicts which cannot be resolved and needed to be worked on con
    7·1 answer
  • Please help me with this​
    9·1 answer
  • Belle is walking south at an average velocity of 6 km/h. How many kilometers can she walk in three hours?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!