At point C, the kinetic energy will be zero and the potential energy will be minimum. As the snowboarder moves from point C to B, there will be a transfer between the kinetic energy to the potential energy. At point B, the potential energy will be back to maximum.
Answer:
Liquids in a form of mixture has less weight as compared to sum of all liquid's weight due to release of gases.
The combined weights of several liquids mixed in an open flask be less than the sum of all the weights of the liquids because when the reaction occurs new products are formed and also some gases which releases in the atmosphere.
These gases also contribute in the weight of the product so when it is released the weight of the mixture of liquids are less than the sum of the weights of all liquids so we can conclude that liquids in a form of mixture has less weight as compared to sum of all liquid's weight.
Explanation:
Answer:
13 kJ
Explanation:
Use the following formula where Q is the Joules needed, m is the mass of the substance, c is the heat capacity, and ΔT is the change in temperature.
Q = mcΔT
The heat capacity of water is 4.186 J/g°C. The mass of water is 234 g. The change in temperature is 13.3°C.
Q = mcΔT
Q = (234 g)(4.186 J/g°C)(13.3°C)
Q = 13,027 J
Since the answer is in Joules, convert to kiloJoules.
13,027 J = 13.027 kJ ≈ 13 kJ
Electric and magnetic fields do not affect xrays as they only affect charged particles and xrays have no charge
hope that helps
Answer:
See explanation below
Explanation:
The question is incomplete. However, here's the missing part of the question:
<em>"For the following reaction, Kp = 0.455 at 945 °C: </em>
<em>C(s) + 2H2(g) <--> CH4(g). </em>
<em>At equilibrium the partial pressure of H2 is 1.78 atm. What is the equilibrium partial pressure of CH4(g)?"</em>
With these question, and knowing the value of equilibrium of this reaction we can calculate the partial pressure of CH4.
The expression of Kp for this reaction is:
Kp = PpCH4 / (PpH2)²
We know the value of Kp and pressure of hydrogen, so, let's solve for CH4:
PpCH4 = Kp * PpH2²
*: You should note that we don't use Carbon here, because it's solid, and solids and liquids do not contribute in the expression of equilibrium, mainly because their concentration is constant and near to 1.
Now solving for PpCH4:
PpCH4 = 0.455 * (1.78)²
<u><em>PpCH4 = 1.44 atm</em></u>