Answer:
rf
Explanation:
attached to the tube. The space between the fins is 3 mm, and thus there are 250 fins per meter length of the tube. Heat is transferred to the surrounding water at T= 43.06°C, with a heat transfer coefficient of 5300 W/m2 · °C. Determine the increase in heat transfer from the tube per meter of its length as a resu.
1, you might have been carrying things that are way too heavy for you.
2, you might have weak tendons.
Answer:
Gs = 2.647
e = 0.7986
Explanation:
We know that moist unit weight of soil is given as

where,
= moist unit weight of the soil
Gs = specific gravity of the soil
S = degree of saturation
e = void ratio
= unit weight of water = 9.81 kN/m3
From data given we know that:
At 50% saturation,
puttng all value to get Gs value;

Gs - 1.194*e = 1.694 .........(1)
for saturaion 75%, unit weight = 17.71 KN/m3

Gs - 1.055*e = 1.805 .........(2)
solving both equations (1) and (2), we obtained;
Gs = 2.647
e = 0.7986
Answer:
Check the attached image below
Explanation:
Kindly check the attached image below to get the step by step explanation to the question above.
The initial void ratio is the <em>parameter </em>which is used to show the structural foundations for each <em>specimen of sand </em>so that the method and speed of compression would be <em>measured</em>.
Relative density is the mass per unit volume of each specimen of sand which is <em>measured </em>and it has to do with the<em> relative ratio</em> of the density of the sand.
Unit weight is the the exact weight per cubic foot of the sand which is measured.
Please note that your question is incomplete so I gave you a general overview to help you better understand the concept
Read more here:
brainly.com/question/15220801