The "sea of instability" refers to a region of elements on the periodic table that are highly unstable. These elements have extremely short half-lives that may be measured in micro- or nanoseconds. (A nanosecond is the time it takes for light to travel one foot.) This region of unstable elements surrounds the island of stability.
Infrared energy is the energy of light between microwave radiation and Ultraviolet radiation
Answer:
V₂ = 4.34 L
Explanation:
According to general gas equation:
P₁V₁/T₁ = P₂V₂/T₂
Given data:
Initial volume = 3.50 L
Initial pressure = 150 Kpa (150/101.325 = 1.5 atm)
Initial temperature = 330 K
Final temperature = 273 K
Final volume = ?
Final pressure = 1 atm
Formula:
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Solution:
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 1.5 atm × 3.50 L × 273 K / 330 K × 1 atm
V₂ = 1433.3 atm .L. K / 330 k.atm
V₂ = 4.34 L
Answer: 0.52849 j /g °C
Explanation:
Given the following :
Mass of metal = 36g
Δ Temperature of metal = (28.4 - 99)°C = - 70.6°C
Mass of water = 70g
Δ in temperature of water = (28.4 - 24.0) = 4.4°C
Heat lost by metal = (heat gained by water + heat gained by calorimeter)
Quantity of heat(q) = mcΔT
Where; m = mass of object ; c = specific heat capacity of object
Heat lost by metal:
- (36 × c × - 70.6) = 2541.6c - - - - (1)
Heta gained by water and calorimeter :
(70 × 4.184 × 4.4) + (12.4 × 4.4) = 1288.672 + 54.56 = 1343.232 - - - - (2)
Equating (1) and (2)
2541.6c = 1343.232
c = 1343.232 / 2541.6
c = 0.52849 j /g °C
Answer:
Glucose
Explanation:
It's the food plants need to complete photosynthesis.