In an ideal gas, there are no attractive forces between the gas molecules, and there is no rotation or vibration within the molecules. The kinetic energy of the translational motion of an ideal gas depends on its temperature. The formula for the kinetic energy of a gas defines the average kinetic energy per molecule. The kinetic energy is measured in Joules (J), and the temperature is measured in Kelvin (K).
K = average kinetic energy per molecule of gas (J)
kB = Boltzmann's constant ()
T = temperature (k)
Kinetic Energy of Gas Formula Questions:
1) Standard Temperature is defined to be . What is the average translational kinetic energy of a single molecule of an ideal gas at Standard Temperature?
Answer: The average translational kinetic energy of a molecule of an ideal gas can be found using the formula:
The average translational kinetic energy of a single molecule of an ideal gas is (Joules).
2) One mole (mol) of any substance consists of molecules (Avogadro's number). What is the translational kinetic energy of of an ideal gas at ?
Answer: The translational kinetic energy of of an ideal gas can be found by multiplying the formula for the average translational kinetic energy by the number of molecules in the sample. The number of molecules is times Avogadro's number:
Boiling I think! hope you get it right
The subscript 2 in the formula o2 indicates that there are 2 atoms of the element oxygen, represented by the symbol "O." The subscript to the right of the symbol tells how many atoms are present of that element.
I believe the answer is "After adding two substances together a new order is detected" because nearly all of the other answers suggest a chemical change has taken place. The reason I say "almost" is because answer two and four results in bubbles forming so the answer cannot be both. The only one to not clearly show a chemical change has occurred is the last answer.