The chemist the count the number of particles (Atoms, Molecules or Formula Unit) in a given number of moles of a substance by using following relationship.
Moles = # of Particles / 6.022 × 10²³
Or,
# of Particles = Moles × 6.022 × 10²³
So, from above relation it is found that 1 mole of any substance contains exactly 6.022 × 10²³ particles. Greater the number of moles greater will be the number of particles.
Answer:
The 1st and 4th options are correct
I.the oxidized form has a higher affinity for electrons
IV. the greater the tendency for the oxidized form to accept electrons
Explanation:
Half reaction can be described as the oxidation or reduction reaction in a redox reaction.it is In the redox rection there is a change in the oxidation states of Chemical species involved. the oxidized form in the redox has a higher affinity for electrons and the greater the tendency for the oxidized form to accept electrons.
Standard reduction potential which is also referred to as standard cell potential can be described as the potential difference that exist between cathode and anode of the cell. In the standard reduction potential most times the species will be reduced which is usually analysed in a reduction half reaction.
(Standard Hydrogen Electrode) is utilized when determining the Standard reduction or potentials of a chemical specie. this is because of Hydrogen having zero reduction and oxidation potentials, as a result of this a measured potential of any species is compared with that of Hydrogen, the difference helps to know the potential reduction of that particular specie.
<span>write out the balance equation
3NaOh+H3PO4->Na3PO4+3H2O
You are given everything needed to calculate
q=heat transfer=2.2*10^2,
H3PO4 moles= 1.5*10^-3,
NaOH moles=5.0*10^-3
equation is deltaHneutraliztion=q/Moles of limiting reagent
H3PO4 is limiting reagent because lowest moles, and is used up first
Now plug in variables
DeltaH=2.2*10^2(1.5*10^3)= 146.67kj/mole
Notice we had to convert J to kj,</span>
Answer:
The intermolecular forces between CO3^2- and H2O molecules are;
1) London dispersion forces
2) ion-dipole interaction
3) hydrogen bonding
Explanation:
Intermolecular forces are forces of attraction that exits between molecules. These forces are weaker in comparison to the intramolecular forces, such as the covalent or ionic bonds between atoms in a molecule.
Considering CO3^2- and H2O, we must remember that hydrogen bonds occur whenever hydrogen is bonded to a highly electronegative atom such as oxygen. The carbonate ion is a hydrogen bond acceptor.
Also, the London dispersion forces are present in all molecules and is the first intermolecular interaction in molecular substance. Lastly, ion-dipole interactions exists between water and the carbonate ion.
Answer:
The larvae of mosquitoes live in water and provide food for fish and other wildlife, including larger larvae of other species such as dragonflies. The mosquito larvae themselves consume a lot of organic matter in wetlands, helping recycle nutrients back into the ecosystem.Ramabai Bhimrao Ambedkar was the first wife of B. R. Ambedkar, who said her support was instrumental in helping him pursue his higher education and his true potential. She has been the subject of a number of biographical movies and books. A number of landmarks across India have been named after her.Hydrochloric acid: HCl. Nitric acid: HNO. Phosphoric acid: H3PO. Sulfuric acid: H2SO.