Answer:
<em>The velocity with which the student goes down the bottom of glide is 12.48m/s.</em>
Explanation:
The Non conservative force is defined as a force which do not store energy or get he energy dissipate the energy from the system as the system progress with the motion.
Given are
<em> mass of the student 73 kg</em>
<em> height of water glide 11.8 m</em>
<em> work done as -5.5*10³ J</em>
Have to find speed at which the student goes down the glide.
According to<em> Law of Conservation of energy</em>,
K.E =P.E+Work Done
mv²/2=mgh +W
Rearranging the above eqn for v
v = √2(gh+W/m)
Substituting values,
V = 12.48 m/s.
<em>The velocity with which the student goes down the bottom of glide is 12.48m/s.</em>
Answer:
Explanation:
1 )
Here
wave length used that is λ = 580 nm
=580 x 10⁻⁹
distance between slit d = .46 mm
= .46 x 10⁻³
Angular position of first order interference maxima
= λ / d radian
= 580 x 10⁻⁹ / .46 x 10⁻³
= 0.126 x 10⁻² radian
2 )
Angular position of second order interference maxima
2 x 0.126 x 10⁻² radian
= 0.252 x 10⁻² radian
3 )
For intensity distribution the formula is
I = I₀ cos²δ/2 ( δ is phase difference of two lights.
For angular position of θ1
δ = .126 x 10⁻² radian
I = I₀ cos².126x 10⁻²/2
= I₀ X .998
For angular position of θ2
I = I₀ cos².126x2x 10⁻²/2
= I₀ cos².126x 10⁻²
Answer: The velocity with which the sand throw is 24.2 m/s.
Explanation:
Explanation:
acceleration due to gravity, a = 3.9 m/s2
height, h = 75 m
final velocity, v = 0
Let the initial velocity at the time of throw is u.
Use third equation of motion
The velocity with which the sand throw is 24.2 m/s.
Answer:
Explanation:
Option a is correct
If puck and pick constitute a system then the momentum of the system is conserved but not this may not be valid for the puck .
Option e is correct
If puck and pick is the system then momentum is conserved but because of the presence of friction, mechanical energy is not conserved.
Friction will cause the energy to dissipate in heat.
We first calculate the acceleration on the ball using:
2as = v² - u²; u = 0 because ball is initially at rest
a = (36)²/(2 x 0.35)
a = 1850 m/s²
F = ma
F = 0.058 x 1850
= 107.3 Newtons