Explanation:
Acceleration is the change in speed over a given time period
Either no forces or a balanced group of forces
(not a group of "balanced forces"; there's no such thing)
Answer:
a
The orbital speed is 
b
The escape velocity of the rocket is 
Explanation:
Generally angular velocity is mathematically represented as
Where T is the period which is given as 1.6 days = 
Substituting the value


At the point when the rocket is on a circular orbit
The gravitational force = centripetal force and this can be mathematically represented as

Where G is the universal gravitational constant with a value 
M is the mass of the earth with a constant value of 
r is the distance between earth and circular orbit where the rocke is found
Making r the subject
![r = \sqrt[3]{\frac{GM}{w^2} }](https://tex.z-dn.net/?f=r%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7BGM%7D%7Bw%5E2%7D%20%7D)
![= \sqrt[3]{\frac{6.67*10^{-11} * 5.98*10^{24}}{(4.45*10^{-5})^2} }](https://tex.z-dn.net/?f=%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7B6.67%2A10%5E%7B-11%7D%20%2A%205.98%2A10%5E%7B24%7D%7D%7B%284.45%2A10%5E%7B-5%7D%29%5E2%7D%20%7D)

The orbital speed is represented mathematically as

Substituting value

The escape velocity is mathematically represented as

Substituting values


Answer:
The answer to your question is Ke = 72 J
Explanation:
Kinetic energy depends on the speed of and object and its mass.
Data
mass = m = 4 kg
speed = v = 6 m/s
distance = d = 8 m
Kinetic energy = ke = ?
Formula
Ke = (1/2) mv²
Substitution
Ke = (1/2) (4)(6)²
Simplification
Ke = (1/2)(4)(36)
Ke = (1/2)(144)
Ke = 72 Joules
Result
Ke = 72 J
<u>F = M A </u> (Newton's #2)
Force = (0.15 kg) (12 m/s²)
Force = (0.15 · 12) (kg·m/s²)
<em>Force = 1.8 Newtons</em>