The molar mass of B(NO₃)₃ - Boron nitrate : 196.822 g/mol
<h3>Further explanation</h3>
In stochiometry therein includes
<em>Relative atomic mass (Ar) and relative molecular mass / molar mass (M) </em>
So the molar mass of a compound is given by the sum of the relative atomic mass of Ar
M AxBy = (x.Ar A + y. Ar B)
The molar mass of B(NO₃)₃ - Boron nitrate :
M B(NO₃)₃ = Ar B + 3. Ar N + 9.Ar O
M B(NO₃)₃ = 10.811 + 3. 14,0067 + 9. 15,999
M B(NO₃)₃ = 196.822 g/mol
Molar mass of :
O2 = 16 * 2 = 32 g/mol
CO2 = 12 + 16 * 2 = 44 g/mol
<span>Balanced chemical equation :
</span>
1 CH4 +
2 O2 =
1 CO2 +
2 H2O
↓ ↓
2 moles 1 mole
2* 32 g O2 ----------> 1* 44 g CO2
x g O2 ------------> 10.0 g CO2
44 x = 2 * 32*10.0
44 x = 640


of O2
Take 15/100 X 75 = The answer
Answer:
Blue, orange and green
Explanation:
Three different colors are observed from compounds containing different oxidation states of chromium: +2 (blue), +3 (green), and +6 (orange).