I think the correct answer from the choices listed above is option A. The kinetic energy after the perfectly inelastic collision would be zero Joules. <span>A </span>perfectly inelastic collision<span> occurs when the maximum amount of kinetic energy of a system is lost. Hope this answers the question.</span>
Answer:
As a mass greater than that of baseball, at the moment of the bowling wave the moment of the baseball ball is also greater
Explanation:
This problem is an application of momentum and momentum. When the astronaut pushed balls, he needed more force to move the ball of greater mass (bowling). The expression for soul is
p = m v
Besibol Blade
p1 = m1 v
Bowling ball
p2 = m2 v
As a mass greater than that of baseball, at the moment of the bowling wave the moment of the baseball ball is also greater
p2 >> p1
"Edmond Locard" states that there is an exchange of materials when two objects come into contact with each other.
<u>Explanation:</u>
A French criminologist who was popular as the "Sherlock Holmes of France," the pioneer in forensic science named as Dr. Edmond Locard. He articulated forensic science's fundamental principle "Each touch leaves a trace." This became known as Locard's philosophy of exchange. A Locard hypothesized that each and every time you touch another person, place or object, the result would be an exchange of materials. Burglars, for instance, will leave evidence of their existence behind and take traces with them too.
If it's not moving at all at the beginning of the 10 seconds, then it falls 490 meters straight down in 10 seconds.
(Note: This is true of all objects on Earth . . . rubber balls, feathers, grains of sand, school buses, battle ships . . . everything. As long as air doesn't hold them back. Anything falling from rest falls 490 meters in the first 10 seconds.)
Answer
Applying Wein's displacement

1) for sun T = 5800 K


2) for tungsten T = 2500 K


3) for heated metal T = 1500 K


4) for human skin T = 305 K


5) for cryogenically cooled metal T = 60 K


range of different spectrum
UV ----0.01-0.4
visible----0.4-0.7
infrared------0.7-100
for sun T = 5800
λ 0.01 0.4 0.7 100
λT 58 2320 4060 5.8 x 10⁵
F 0 0.125 0.491 1
fractions
for UV = 0.125
for visible = 0.441-0.125 = 0.366
for infrared = 1 -0.491 = 0.509