These waves most likely belong to the part<span> of the electromagnetic spectrum that contains radio waves, since radio waves have the lowest frequency of any of the other waves.</span>
Answer:
a) 0.3 m
b) r = 0.45 m
Explanation:
given,
q₁ = 0.44 n C and q₂ = 11.0 n C
assume the distance be r from q₁ where the electric field is zero.
distance of point from q₂ be equal to 1.8 -r
now,
E₁ = E₂



1.8 = 6 r
r = 0.3 m
<h3>b) zero when one charge is negative.</h3>
let us assume q₁ be negative so, distance from q₁ be r
from charge q₂ the distance of the point be 1.8 +r
now,
E₁ = E₂



1.8 =4 r
r = 0.45 m
Answer:
ΔH°comb=-5899.5 kJ/mol
Explanation:
First, consider the energy balance:
Where
is the calorimeter mass and
is the number of moles of the samples;
is the combustion enthalpy. The energy balance says that the energy that the reaction release is employed in rise the temperature of the calorimeter, which is designed to be adiabatic, so it is suppose that the total energy is employed rising the calorimeter temperature.
The product
is the heat capacity, so the balance equation is:

So, the enthalpy of combustion can be calculated:

I will be happy to solve any doubt you have.
Answer:
Explanation:
This is a simple Law of Momentum Conservation problem of the inelastic type. The equation for this is
Filling in:
which simplifies to
5400 + 0 = 3300v
so v = 1.6 m/s to the east, choice B
The cardiovascular system moves blood through hour body. It is made up of the Heart pumping the blood that is circulated around the body through its networks of arteries, veins and capillaries. The cardiovascular and lymphatic systems together make up the circulatory system.