Answer:
88 m/s
Explanation:
To solve the problem, we can use the following SUVAT equation:

where
v is the final velocity
u is the initial velocity
a is the acceleration
d is the distance covered
For the car in this problem, we have
d = 484 m is the stopping distance
v = 0 is the final velocity
is the acceleration
Solving for u, we find the initial velocity:

Answer:
t = √2y/g
Explanation:
This is a projectile launch exercise
a) The vertical velocity in the initial instants (
= 0) zero, so let's use the equation
y =
t -1/2 g t²
y= - ½ g t²
t = √2y/g
b) Let's use this time and the horizontal displacement equation, because the constant horizontal velocity
x = vox t
x = v₀ₓ √2y/g
c) Speeds before touching the ground
vₓ = vox = constant
=
- gt
= 0 - g √2y/g
= - √2gy
tan θ = Vy / vx
θ = tan⁻¹ (vy / vx)
θ = tan⁻¹ (√2gy / vox)
d) The projectile is higher than the cliff because it is a horizontal launch
KE=1/2 m v^2
KE= .5 x 2kg x 15m/s to the 2nd power
KE=225 km/s
Answer:
The specific question is not stated, however the general idea is given in the attached picture. The electric field in each region can be found by Gauss’ Law.
at r < R:
Since the solid sphere is conducting, the total charge Q is distributed over the surface, and the electric field inside the sphere is zero.
E = 0.
at R < r < 2R:
The electric field can be found by Gauss’ Law as in the attachment. The green pencil shows this exact region.
at 2R < r:
The electric field can again be found by Gauss’ Law, the blue pencil shows the calculations for this region.
Explanation:
Gauss’ Law is straightforward when applied to spheres. The area of the sphere is
, and the enclosed charge is given in the question as Q for the inner sphere, and 2Q for the whole system.