Answer:
The magnitude of momentum of the airplane is
.
Explanation:
Given that,
Mass of the airplane, m = 3400 kg
Speed of the airplane, v = 450 miles per hour
Since, 1 mile per hour = 0.44704 m/s
v = 201.16 m/s
We need to find the magnitude of momentum of the airplane. It is given by the product of mas and velocity such that,



or

So, the magnitude of momentum of the airplane is
. Hence, this is the required solution.
Yes... This is a question google could answer. Just Saying
A. The formula for mean free time is:
t = V/(4π√2 r²vN)
where
N = 1×10¹⁶ molecules (per m³)
V = 1 m³
r = 111×10⁻⁷m (atomic radius of silicon)
Let's solve for v first:
v = √(3RT/M) = √(3(8.314 m³·Pa/mol·K)(25 + 273 K)/28.1 g/mol Si)
v = 16.26 m/s
t = (1 m³)/(4π√2 (111×10⁻⁷m)²(16.26 m/s)(1×10¹⁶ molecules))
<em>t = 2.81×10⁻9 s</em>
<em>Pure silicon has a high resistivity relative to copper because copper is a conductor, while silicon is a semi-conductor. </em>
Answer: The correct answer is Image B.
Explanation: For an object to accelerate, there should be unbalanced forces present. An object will move in the direction of net force.
Balanced forces are defined as the forces acting on the same object which are equal in magnitude but act in opposite direction. The net forces are 0.
Unbalanced forces are defined as the forces acting on the same object which are unequal in magnitude. The net force is non-zero.
For the given images:
Image A: This box will accelerate easily because the net force is non-zero and is moving in right direction.
Image B: This box will not accelerate because the net force is zero as all the forces are balancing one another. Hence, the object will stay at rest.
Image C: This box will accelerate easily because the net force is non-zero and is acting in between the normal and applied force.
Image D: This box will accelerate easily because the net force is non-zero and is moving in right direction.
Hence, the correct option is Image B.