Answer:
The increase in gravitational potential energy is the same in both cases
Explanation:
It is easier to climb a mountain in a zigzag way rather than climbing on a straight line but since the distance is the same ( vertical height ) , mass and gravity is the same. Hence the increase in gravitational potential energy is the same in both cases.
gravitational potential energy = mgh ( same in both cases )
m = mass
g = acceleration due to gravity
h = distance ( vertical height )
<em>Inertia</em> is the property of all matter by which it tends to remain in constant, uniform motion until it's acted on by an external force.
No, you can't aim where you see the fish, because refraction will change the position of the fish and make it appear in a different position from where it actually is.
Hope this helps!
To solve this problem we will apply the concepts related to Ohm's law and Electric Power. By Ohm's law we know that resistance is equivalent to,

Here,
V = Voltage
I = Current
While the power is equivalent to the product between the current and the voltage, thus solving for the current we have,


Applying Ohm's law


Therefore the equivalent resistance of the light string is 