1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tekilochka [14]
3 years ago
10

What is the surface temperature of a star that has a peak wavelength of 290 nm?

Physics
1 answer:
Maksim231197 [3]3 years ago
5 0
We need to use Wien's Law

Wavelength = 0.0028976 [m.K] / T

This establishes a relation between the wavelength and temperature of a black body (any body that absorbs radiation, such as the stars)

T = 0.0028976 [m.K]/290 E-9[m]  = 9991.724 K
You might be interested in
The ___ of a gas is due to the force exerted on the walls of the
Furkat [3]

Answer:

its molecules

Explanation:

7 0
2 years ago
A 58 g firecracker is at rest at the origin when it explodes into three pieces. The first, with mass 12 g , moves along the x ax
alexdok [17]

Answer:

Explanation:

We shall apply conservation of momentum law in vector form to solve the problem .

Initial momentum = 0

momentum of 12 g piece

= .012 x 37 i since it moves along x axis .

= .444 i

momentum of 22 g

= .022 x 34 j

= .748 j

Let momentum of third piece = p

total momentum

= p + .444 i + .748 j

so

applying conservation law of momentum

p + .444 i + .748 j  = 0

p = - .444 i -  .748 j  

magnitude of p

= √ ( .444² + .748² )

= .87 kg m /s

mass of third piece = 58 - ( 12 + 22 )

= 24 g = .024 kg

if v be its velocity

.024 v = .87

v = 36.25 m / s .

6 0
2 years ago
True or false cold air can hold more moisture than warm air
agasfer [191]
It is true
I hope this helps
5 0
3 years ago
A shot-putter accelerates a 7.2 kg shot from rest to 17 m/s . what work did the shot-putter do on the ball?
garri49 [273]
<span>1.0x10^3 Joules The kinetic energy a body has is expressed as the equation E = 0.5 M V^2 where E = Energy M = Mass V = Velocity Since the shot was at rest, the initial energy is 0. Let's calculate the energy that the shot has while in motion E = 0.5 * 7.2 kg * (17 m/s)^2 E = 3.6 kg * 289 m^2/s^2 E = 1040.4 kg*m^2/s^2 E = 1040.4 J So the work performed on the shot was 1040.4 Joules. Rounding the result to 2 significant figures gives 1.0x10^3 Joules</span>
6 0
3 years ago
A hanging weight, with a mass of m1 = 0.365 kg, is attached by a string to a block with mass m2 = 0.825 kg as shown in the figur
morpeh [17]

The speed of the block after it has moved the given distance away from the initial position is 1.1 m/s.

<h3>Angular Speed of the pulley </h3>

The angular speed of the pulley after the block m1 fall through a distance, d, is obatined from conservation of energy and it is given as;

K.E = P.E

\frac{1}{2} mv^2 + \frac{1}{2} I\omega^2 = mgh\\\\\frac{1}{2} m_2v_0^2 + \frac{1}{2} \omega^2(m_1R^2_2 + m_2R_2^2) + \frac{1}{2} \omega^2( \frac{1}{2} MR_1^2 + \frac{1}{2} MR_2^2) = m_1gd- \mu_km_2gd\\\\\frac{1}{2} m_2v_0^2 + \frac{1}{2} \omega^2[R_2^2(m_1 + m_2)+ \frac{1}{2} M(R_1^2 + R_2^2)] = gd(m_1 - \mu_k m_2)\\\\

\frac{1}{2} m_2v_0 + \frac{1}{4} \omega^2[2R_2^2(m_1 + m_2) + M(R^2_1 + R^2_2)] = gd(m_1 - \mu_k m_2)\\\\2m_2v_0 + \omega^2 [2R_2^2(m_1 + m_2) + M(R^2_1 + R^2_2)] = 4gd(m_1 - \mu_k m_2)\\\\\omega^2 [2R_2^2(m_1 + m_2) + M(R^2_1 + R^2_2)] =  4gd(m_1 - \mu_k m_2) - 2m_2v_0^2\\\\\omega^2 = \frac{ 4gd(m_1 - \mu_k m_2) - 2m_2v_0^2}{2R_2^2(m_1 + m_2) + M(R^2_1 + R^2_2)} \\\\\omega = \sqrt{\frac{ 4gd(m_1 - \mu_k m_2) - 2m_2v_0^2}{2R_2^2(m_1 + m_2) + M(R^2_1 + R^2_2)}} \\\\

Substitute the given parameters and solve for the angular speed;

\omega = \sqrt{\frac{ 4(9.8)(0.7)(0.365 \ - \ 0.25\times 0.825) - 2(0.825)(0.82)^2}{2(0.03)^2(0.365 \ + \ 0.825)\  \ +\  \ 0.35(0.02^2\  + \ 0.03^2)}} \\\\\omega = \sqrt{\frac{3.25}{0.00214\ + \ 0.000455 } } \\\\\omega = 35.39 \ rad/s

<h3>Linear speed of the block</h3>

The linear speed of the block after travelling 0.7 m;

v = ωR₂

v = 35.39 x 0.03

v = 1.1 m/s

Thus, the speed of the block after it has moved the given distance away from the initial position is 1.1 m/s.

Learn more about conservation of energy here: brainly.com/question/24772394

5 0
2 years ago
Other questions:
  • What is the acceleration of the object in the graph?
    8·1 answer
  • Which climate condition is typically found in the tropics due to the interaction of the atmosphere and hydrosphere?
    5·2 answers
  • A train travels 600 km in one hour. What is the trains velocity in meters/second
    5·2 answers
  • a ball is projected with a certain angle with initial velocity u. it covers horizontal range R. With what initial velocity it mu
    7·1 answer
  • A students walks one hour. She walks 4 blocks east and 2 blocks west. Her average velocity is?
    9·1 answer
  • A locomotive with two carriages drives out of the station. The locomotive has a mass of 3.0 tonnes, and each of the two wagons h
    10·1 answer
  • An elevator of 3 × 10^4N is raised to a height of 100m in 20s . The work done by electric motor is equivalent to ?​
    15·1 answer
  • Difference between centrifugal and semi-centrifugal clutches​
    10·2 answers
  • Doctors use radioactive sources as tracers for medical imaging. The table below shows the properties
    11·1 answer
  • This refers to the ability of the joints to move through a full range of motion
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!