Answer:
a) 
b) 
Explanation:
Let's find the radius of the circumference first. We know that bob follows a circular path of circumference 0.94 m, it means that the perimeter is 0.94 m.
The perimeter of a circunference is:


Now, we need to find the angle of the pendulum from vertical.


Let's apply Newton's second law to find the tension.

We use centripetal acceleration here, because we have a circular motion.
The vertical equation of motion will be:
(1)
The horizontal equation of motion will be:
(2)
a) We can find T usinf the equation (1):

We can find the angular velocity (ω) from the equation (2):

b) We know that the period is T=2π/ω, therefore:

I hope it helps you!
Answer:
The Eurasian Plate
Explanation:
The Eurasian plate is one of the most extended on Earth, crossing all of Asia and Europe. The Eurasian plate is between the North American and the African Plates on the north and west sides. The Eurasian plate crushed up above the Indian plate. The Tibetan plateau and the Himalayan mountain range formed due to the crush between the Eurasian Plate and Indian Plate, which started 50 million years ago.
Answer:
(b) B
Explanation:
The direction of force on a current carrying wire in a magnetic field can be found using the right hand rule, which states that-"stretch the thumb in the direction of the current, and point the fingers in the direction of magnetic field. The direction of palm will then give the direction of force on the wire
On wire B the forces due to A and C act in the same direction and so strengthen each other. they get added up because the forces act in the same direction.
on wires A and C the forces (due to B and C and A and B
respectively) act in opposite directions and therefore tend to cancel out.
Since each student emits 100 W, so 170 students will emit:
total heat = 100 W * 170 = 17,000 W
Convert minutes to seconds:
time = 50 min * (60 s / min) = 3000 s
The energy is therefore:
E = 17,000 W * 3000 s
<span>E = 51 x 10^6 J = 51 MJ</span>
Answer:
Because the wavelengths of macroscopic objects are too short for them to be detectable.
Explanation:
Wavelength of an object is given by de Broglie wavelength as:

Where, 'h' is Planck's constant, 'm' is mass of object and 'v' is its velocity.
So, for macroscopic objects, the mass is very large compared to microscopic objects. As we can observe from the above formula, there is an inverse relationship between the mass and wavelength of the object.
So, for vary larger masses, the wavelength would be too short and one will find it undetectable. Therefore, we don't observe wave properties in macroscopic objects.