1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jonny [76]
4 years ago
6

In a large Introductory Statistics lecture hall, the professor reports that 55% of the students enrolled have never taken a Calc

ulus course, 32% have taken only one semester of Calculus, and the rest have taken two or more semesters of Calculus. The professor randomly assigns students to groups of three to work on a project for the course. What is the probability that the first groupmate you meet has studied
a) two or more semesters of Calculus?
b) some Calculus?
c) no more than one semester of Calculus?
Mathematics
2 answers:
Scilla [17]4 years ago
6 0

0aTrx9anECwB2Ur8hxnkXKzrCSOOWYHXzjkv1RNoaudadiEqGwFVjaAQXmGAYt3xunLubnCiOutzLb657CHLrVQCAHcVHpY5oO9LzAqdvoHc4SHl0bfNalclnz3syFOHI1ka7ZU1qXOMCM8jFPvzRR0zB3XG55JFXwMKcHgMZjFzSiNSVuL3W10yjO68V4geOnHj4L82uKHnpK9l4jUkP3tPrSk7HqHnCyeu6yhZZ5u5LKXjFN8WUavovbRClZBAvqVHI6y4AGeGxBLJnNEvaSTXsoqf8qHvCmcX4ys5DrMBrpUgenanqrwqU3cF7tP96O9ag0YxsuAgisLGxMZwG7yntUa8C01CEy30dwkCkrjzT9pnQq25LaheBPRyc4RafpCRjHjFUeGplcUTUhAz44x7IjaGCWN5PrE6r6JYfUtA0xr0pBoj9VVCqTM3pDjOfnFWOoBweJLXSc28HE7H0Do8onwzSBZHr4KabJ1EwC2m3Je5sb4G6FZsjBUcs9bXpvjkyXJo4KO4y9Zxp9HX2A4JoQovqEFUUOHLA6PqlqEOpyDP6vIrGIOJ2Mp3CiblxqNcurKWmVO0csaTRMUFSqEbkkTzU8NOlN8SUHC9YJejjujBDYcaJzRbs2PxHItHnVkQUHC64IbLOWENiPCH8wYUBJLQYgs7V5rG2LtlJ7mlRnz2vjymxU2qy6HP23ngTxhcj90aJWNgyBkR0AvFNudtzpSTk7cWNyVRxRQxuJuY7Egcp7XtI2yd64eB4I4QaGddPR36FWKgGgy8BbBc8iX1TOWOuP5rfbH89WTJLjSwFOEG7wj7klp9CIRUVQfIFXPxrROgZbKR7EMU8nxUWNkTWwZywiZCU5Q8yX1t7ZLyMt7J0BaE82QE1E56tajNYMy1BTEVEDUCW3O8JkbJg5EOVZTGpvgccC4rzvlk8tuPA55eU9cHy606F7UXNJUZqdyujDCAdiT1y5TKZjlP389PhPypmt1Whuxkw2H7Uhk3fy3XH5t7iuYo42zGK926jd3CDy76QUyXdkmXTpRE5HsqLzcKdghRrysTmVukyjQbTkOq0W842cHNsHKsTe0Ok7F3wrvaDtPDemmwDXQzSC7W8ylSZsbhOS27eV3UqVycZ6pATCT3ONlVWr9yStQ0HG6ZOjCKxNKS1ZEO3tmlLbl8MJ0aXSGgdOqgydqKPfyuWYRPTTK7seGr1AR6Ge0P9dylvN8QXurQhiZqndlz4bys7Lw8iUv5UzPZInkzoPi7qGauhFlHH05g8N24LTvae00tEAq9hmQD1GS50ID5LV58x0DcpAaYBb9sai3Q75bsY0exUsjlWrRvdzeq5Be8p72ZH7ZBwmRWk6ZCWuHXzz59jkReg0jW4fpAO3TdepHjR2m55SpkTgYMOLSeMwD0DMR0kOePSSqrCL3Emm8RR838x28YRXk4vT71D8hzHr24zm4l5GjcGIchgWHsC1JKf3Skbxi20L9SrvqlVvXZotnDtLPCx7bL5EvpvqEVYR7qEifM797lhuh3plElZ5sxAl7D7HVoD36Mgfa8ciWA9OvxEoU51W8hctYVKP5ziTwFxwMpeBEoti1EKCWIIl2g2eA61rIry8FWBzOXAUS5SOcLzMlay97Eldn8YBQuceqvUoYSBa5jiaTZOAf8UO6vxtxVpCihbAcTFzUdTMZORfRu8evjLAsmS6f5ZtsX6Zgra1u3bKM4KaTV6VhAsK30iqbs2EyckWePBkvLDxWCm6K1g9eTSMCGhS0H4VoH3ddnWkUk3qQwiuHGg9z4Kyq28djAUUBloTARU6bU9JAguQ3Q2NrDZ3DwG7cPjZS4ENi0JZujx7BNebqqCuXxHYfaNcblGOjFh1O6lBMJ3h6gA7RKVVVasdHYXnjbOIG6IRELFbbxgElpD5QWYFKm6oxXdm5fCnvtQvdgobHXJIiQkG2xbXV78wAbkAUjcRt5nj7ZOzptANM8sKYNR0FZBGQIJTNclCLwW1RFcrccaXDAaiKYw1lpwV1nVeBDrjdiTxLTVwuxCPtGTaga64qpgtJGxkwtEpD7SKJNPZgdDqtnDq5JjIJc9Zd4PYbNT9rakQV6fYUVtuHAtvUfF0hwfptWnRc7BdMS7bPURAPkbvhePu2kfSzuQRBiYRMN6MA8K5elMI27jLPGEE30VznfBM6fIFSy9QIfJCwNrpkXbiSUEFBzwnBE2cgv7Y52oWvQTYplOTclzYTSJ7d3UQRA7gk9Cqo4vLP4runvvxHkXBJMGxYGiPpY6goN4CnVrlKbmYODKnNj5Obtsv4b0Hi9yr2X1fZA8z4xY9euYFe5ALqe8wdPLxU6VCyxB3pOSsv2JcmwT7cVd4qjEAvbCbJC0kegg1LJshFMz0pxglTM2qM1qb2pTQVfq5QGJyo2aDPllN7NhChTz32p6pOGHpI8hCOWBam56OTp2EZi6Lv1MOFNyUT7EFoeDQUaExlyRyae9ilEhenu4GCTrpWpm1UyIvXt7JVsTggpXJlEfMJ8taP1quFoxBz1kP2YdcLiL0jjQW1s2txgp8JOtDRVyEHd2UmWpGp6a8CNN708EEkh54E8FQcIAfzgjiz8AHlXA24PWqSdPU7aPkXzsX1gz6F8IiSWaJDe4qADkf3aVurSPFFz6bKFO6iSReI5EBlovNX8evsKCrB0rSQc6re37gCjAJddVSNq9OGFeJ3Wtvvf23Pjeeuj5o9sOillPfdjAjtOBD0cDe2iCSRDbaopI2Tk94FFkZ5bVuPdufJZm4TzqJbcFMUFTZx5xfdkdxgeKNwcTz9cOQkaqd3upxIuIKI14kLMVfeo95J3ijtEA87jjMrTRlEUzeDGDTWz5hRmYedsccyAGNhxvICSZVNZ2YS67x4BlIpVrKRa5yqoNMIIgEdscZi3aCBPzaqJ4A8p2MTtY33L8TW620YQMpWneM7evQBfsUZCR62JOIelo23fUIfTDOzcZBBeu4PnHW1nRB4OzCwiV5mBINj7sQF5nhVR6Hw8rDKbKHw7HRLAHsiwiSdc0SbCyohsb1zmtruRPazqqI1LCO77C3W3C22riniFM9wKMwcRlGrOJG8NvFUREW4523dnemcCYLjN1622gcLhjJIzd9mvn4mXeyiezse4pEPEpohtgdbl1IfCLIOAWgUgL6vbbu4Vwl9GqDSDv1kgRPlITiVuBrqzUWDwB1PITMlPfbwq017haM2jh3WDDFjJmQmCr1kmhXlarr5uwiCQkzPXWd2mmkWVcnUUkyqf5LKxrVEQj8ESCGjNbXuEsssIg1X0X1oBMSGP6X5UwnU0AscCQ7zlhCidKfsqm2V9fK38rSjKSyCOSosDxab9oQqKiKcnEwLslc5LjRXhgR500RgFwH9MLcnE0DgiP8oZTR5Ar43kXdd0fj7AUF9c77lCZHaLhCgCIGtjMn7aUuLSqQ1zojWUbKEz8we5JsGUBwYX4sVPNE90OTkQqY8KuTcZ80bear467GnGxRI1LYlrIkro8PNJXOEVYdLBtqnaahMeiy1PzSbrwgiBlcyJEcesgNSIQpundUu2LnF70SfQQ1R9PQ74D8m7FWMYIk9SUPj4SpFUUBdSEsa4R4vS0qkE0UJnhAxo59ARA4iOI7k2thlP1ugVOBnaIMAOoI9PWXoosJjpyEXgoK2VYJj0IUiJkDTumdUrCGvuxzF7zuQ94fJxd3JlNWZIBATSO9baMK5PDrJLv9FDpXYhQS5NDcLRJWd0PIXH2wUraqpxAGQemqUDu5S57FFB0RZpvZV1JQNpcge1JyIs1onSo73kdNspsftt6DGWiP87CGWrJqeLKsOnXSleLpCTsDKDzjo0W0zZ3DtrNWbk4yxtaEcE58EecQMxR2pM52qzjNMcKGkI15VP9P8x3Mk4wPSOPnJaKJSUiSosHEFZHmgptuHAcBC1yHQL6gnymJFSXrHpzWfPxAget7DCHLtULWg1yFHlED4SOhCkQ1yzNNIqlRaIRgCzfEbnWeIczUnTrBbKZdutSeoFi25ZDJLG6Fs5WmjW8R32MunyKC71fNLsGQ2Kz81g2obBQ3TdqqTJe6su9eB5jvjRg5eV0nUAlB0EJvYO0uKHv4P29nquIu1Oazbk88DqpC2UCpY4pffOEmNaLVH7NBmLxUXMMwBQc2vgKyAkCrMZ3XLZzCPcPu9XHN5nCPPxAULw0xGYwFyirYG8O0urScaqYfl0vh7BGzdRLytFIxykwuqy5bKhNY3AouaAzxxkT8F8oyFcSi13JDnVJzbLp3lecXyRmh0a6T5WApbuVZQp5jS8tLlcW5uxQsYxxe1Vq2OUtFTFA3IywLcgDqS5JRSrPz94bbZlHgBX4UoCvG9YX962lmAqb6IcWpBHpj6TWj9E1HCa0GpPsHlTi5xMK8HAxBDypGWhIilv9ZKibu9ZzYw2CoNgZ2dxbaz4aDVQYzJsNTRjtKl6wQZt8pufWQAla0eCmtWOoRD8fg3chseBtDbI2a7b1hGSZKqpQfcGu91bEjSK09V1IWkBloUtg1k9l7VjiTulrgNl4WHRSXGo8eZim3lfPM5QyYszFdKedBcSPZVGpdTuzQLRnvkqdrgF8RQ6mli6b99FMUKgCMx3l60cP4T2AHmH3NwLyuneJ6B4IDO4WxzopKiVeTYkAa8ZzPZOmNsckGsFHJNPjlk2Mrxy4OB3IR9oewpLw6sZzeguY6W7qPXkjfymblzZMBJhnrtUiu7To9q7imiNyiBuhajyIrm2gkannkhG9S9Oay64CPmknd3ntcUs6L2tKNnUw7DRf6qj5DCPSUcCnYfUad2Cjk5qyZyqxQrJrw6RSxB2XjMFl6mmJRw1rdFDQUAtaL5NC5nCUdBbCeKaaWEcvulGxKIJtkoQriG44J7FspdNwG5wF1oQyK58AlKTiIFbv0DOmrzmMaJEP97bvyh42VPR8Slf7AwJHi7ahS2kcdguVYcHOWrJDL8v0eAsGeHJKpmHVY4RUNxZ6F1xG0qCTkYuC5eT

Anna35 [415]4 years ago
5 0

Answer:

a) There is a 13% probability that a student has taken 2 or more semesters of Calculus.

b) 45% probability that a student has taken some calculus.

c) 87% probability that a student has taken no more than one semester of calculus.

Step-by-step explanation:

We have these following probabilities:

A 55% that a student hast never taken a Calculus course.

A 32% probability that a student has taken one semester of a Calculus course.

A 100-(55+32) = 13% probability that a student has taken 2 or more semesters of Calculus.

a) two or more semesters of Calculus?

There is a 13% probability that a student has taken 2 or more semesters of Calculus.

b) some Calculus?

At least one semester.

So there is a 32+13 = 45% probability that a student has taken some calculus.

c) no more than one semester of Calculus?

At most one semester.

So 55+32 = 87% probability that a student has taken no more than one semester of calculus.

You might be interested in
Kelly has nine pieces of ribbon. She recorded the length of each piece in the line plot shown.
Ugo [173]

Answer: 44 inches

Step-by-step explanation:

The 3 longest are 14.5 14.5 and 15 so the answer is adding them and 44 is the answer.

6 0
3 years ago
F(x)= 20 + 12(x - 2)​
Vinvika [58]

Answer:

f(x) = 12x - 4

Step-by-step explanation:

f(x)= 20 + 12(x - 2)​

Distribute

f(x) =20 +12x - 24

Combine like terms

f(x) = 12x+20-24

f(x) = 12x - 4

4 0
3 years ago
Read 2 more answers
In 8-10, a teacher gave a test with 50 questions,each worth the same number of points. Donovan got 39 out pf 50 questions right.
photoshop1234 [79]
9 questions worth time over 60
3 0
3 years ago
Read 2 more answers
NEED HELP ON ALL OF THESE PLEASE
tangare [24]

Answer:

1) 2670m^2

2) 4718 in^2

3) 4730 ft^2

4) 7900cm^2

5) 11 542mm^2

6) 3740m^2

7) 6374m^2

8) 2824 ft^2

9) 6004mm^2

Step-by-step explanation:

Area of a rectangular prism = 2wl + 2lh + 2hw

Where,

w = width

l = length

h = height

1) Area of a rectangular prism = 2wl + 2lh + 2hw

h = 10m; l = 31m; w = 25m

Area = 2(25m)(31m) + 2(31m)(10m) + 2(10m)(25m)

= 2(775m^2) + 2(310m^2) + 2(250m^2)

= 1550m^2 + 620m^2 + 500m^2

= 2670m^2

2) Area of a rectangular prism = 2wl + 2lh + 2hw

h = 21 in; l = 35 in; w = 29 in

Area = 2(29in)(35in) + 2(35in)(21in) + 2(21in)(29in)

= 2(1015in^2) + 2(735in^2) + 2(609in^2)

= 2030in^2 + 1470in^2 + 1218in^2

= 4718 in^2

3) Area of a rectangular prism = 2wl + 2lh + 2hw

h = 19 ft; l = 39ft; w = 28ft

Area = 2(28ft)(39ft) + 2(39ft)(19ft) + 2(19ft)(28ft)

= 4730 ft^2

4) Area of a rectangular prism = 2wl + 2lh + 2hw

h = 24,cm; l = 49cm; w = 38cm

Area = 2(38cm)(49cm) + 2(49cm)(24cm) + 2(24cm)(38cm)

= 7900cm^2

5) 11 542mm^2

6) 3740m^2

7) 6374m^2

8) 2824 ft^2

9) 6004mm^2

Note : Kindly follow the same process for the remaining questions, you'd get their correct answers. I can't finish up due to time constraints. However, you may send me a direct message for the remaining answers. Thank you.

5 0
4 years ago
Read 2 more answers
Scores on a test are normally distributed with a mean of 81.2 and a standard deviation of 3.6. What is the probability of a rand
Misha Larkins [42]

<u>Answer:</u>

The probability of a randomly selected student scoring in between 77.6 and 88.4 is 0.8185.

<u>Solution:</u>

Given, Scores on a test are normally distributed with a mean of 81.2  

And a standard deviation of 3.6.  

We have to find What is the probability of a randomly selected student scoring between 77.6 and 88.4?

For that we are going to subtract probability of getting more than 88.4 from probability of getting more than 77.6  

Now probability of getting more than 88.4 = 1 - area of z – score of 88.4

\mathrm{Now}, \mathrm{z}-\mathrm{score}=\frac{88.4-\mathrm{mean}}{\text {standard deviation}}=\frac{88.4-81.2}{3.6}=\frac{7.2}{3.6}=2

So, probability of getting more than 88.4 = 1 – area of z- score(2)

= 1 – 0.9772 [using z table values]

= 0.0228.

Now probability of getting more than 77.6 = 1 - area of z – score of 77.6

\mathrm{Now}, \mathrm{z}-\text { score }=\frac{77.6-\text { mean }}{\text { standard deviation }}=\frac{77.6-81.2}{3.6}=\frac{-3.6}{3.6}=-1

So, probability of getting more than 77.6 = 1 – area of z- score(-1)

= 1 – 0.1587 [Using z table values]

= 0.8413

Now, probability of getting in between 77.6 and 88.4 = 0.8413 – 0.0228 = 0.8185

Hence, the probability of a randomly selected student getting in between 77.6 and 88.4 is 0.8185.

4 0
3 years ago
Other questions:
  • Select all of the sentences that are punctuated correctly.
    7·2 answers
  • How many points are needed to determine a unique line segment?
    15·1 answer
  • What is the percent change from 41 to 95?
    5·1 answer
  • Why is the information in the diagram enough to determine that △LMN ~ △PON using a rotation about point N and a dilation?
    14·1 answer
  • Sarah rolls a die twice. What is the probability that she rolls a 3 and then an even number?
    11·2 answers
  • Select the descriptions that are true of the equation y - 6= - 3(x+2). Select all that apply.
    10·1 answer
  • Draw a model and write an equation to represent four times as many as 3 is 12 explain your work
    14·1 answer
  • Marty wants to reduce 140/360 . He wants to do it in one step.
    7·1 answer
  • What will be the value of his account in 5 years if he does not make any additional deposits or withdrawals?​
    9·1 answer
  • 45+ 1250 + x = 3049<br><br> What is x?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!