Explanation:
Wave is defined as a disturbance or oscillation that travels through space-time, accompanied by a transfer of energy. Wave motion transfers energy from one point to another, often with no permanent displacement of the particles of the medium.
The velocity of wave is equal to the product of its wavelength and frequency (number of vibrations per second). Longitudinal waves like sound waves travel through a medium.
Therefore, a wave move from a layer of high velocity to that of a lower velocity the wavelength changes (that is, decreases) as it moves.
Since we have 15 kilometers per hour, and we're looking for 20 minutes, let's set up proportions.
20/60 minutes = x/15
20/60 = 1/3, so let's leave that simplified.
1/3 = x/15
Look at the denominators, 3 to 15 is a factor of 5, so multiply the numerator by 5.
1 • 5 = 5, so you will cover 5 kilometers in 20 minutes.
I hope this helps!
Not exactly the best way to describe it but, it is used to calculate resistance of a lever as in the use of a pry bar or pulley. Technology used to increase output with little input.
Inertia is defined as the property of matter by which causes it to resist changes in its state of motion such as changes in velocity. From the given options above, the option that has the greatest inertia would be option B. A jet airliner.
Work done is when a force is exerted to cause a displacement in a certain object.
the equation for work done ;
work done = force applied * displacement of the object
when the force applied is not in the same direction as that of the displacement of the object then the effect of the force is not its whole value. The force is then applied at an angle to that of the displacement of the object, then the resultant force is the force exerted* cos of the angle between force and displacement, in this instance the angle is 40 °.
the new equation is then;
work done = force cos 40° * displacement
after substitution,
work = 25 N * 0.76 * 50 m
= 957.55 J
round it off
= 9.6 *10² J
the correct answer is B