Answer:
(35 N - 10 N)/8kg = 3.125 m/s^2
Explanation:
The formula for Force is:
Force = Mass*Acceleration
(Force is equal to Mass times Acceleration)
Since we're told to find the acceleration of the box. We make acceleration the subject of the equation:
Acceleration = Force/Mass
(Acceleration equal to Force divided by Mass)
We know that the force are 35 N forward and 10 N backward, and the weight of the box is 8kg.
= (35 N - 10 N)/8kg
The reason that 35 N minus 10 N is because the 10 N is pushing the box backward.
= 25 N/8kg
= 3.125 m/s^2
Hope it helps :DD
The spring is initially stretched, and the mass released from rest (v=0). The next time the speed becomes zero again is when the spring is fully compressed, and the mass is on the opposite side of the spring with respect to its equilibrium position, after a time t=0.100 s. This corresponds to half oscillation of the system. Therefore, the period of a full oscillation of the system is

Which means that the frequency is

and the angular frequency is

In a spring-mass system, the maximum velocity of the object is given by

where A is the amplitude of the oscillation. In our problem, the amplitude of the motion corresponds to the initial displacement of the object (A=0.500 m), therefore the maximum velocity is
Answer:
44100 N
Explanation:
Each wall will have dimension of 4 m x 1.5 m
Whole force will act on central point of wall situated at a depth of 1.5 /2 = .75m
pressure at CM = h d g , h = .75 , d ( density of water = 10³ )
pressure at CM = .75 x 10³ x 9.8
= 7350 N / m²
Total force on each wall
= pressure x area
= 7350 x 4 x 1.5
= 44100 N Ans
b ) If h = 1.5 x 2 = 3
Pressure = hdg
1.5 x 10³ x 9.8
= 14700 N / m²
Force
= pressure x area
14700 x 3 x 4
= 176400 N
Which is 4 times 44100 N
So force will quadruple.
It is so because both area and height have become twice.
Answer:
The film thickness is 4.32 * 10^-6 m
Explanation:
Here in this question, we are interested in calculating the thickness of the film.
Mathematically;
The number of fringes shifted when we insert a film of refractive index n and thickness L in the Michelson Interferometer is given as;
ΔN = (2L/λ) (n-1)
where λ is the wavelength of the light used
Let’s make L the subject of the formula
(λ * ΔN)/2(n-1) = L
From the question ΔN = 8 , λ = 540 nm, n = 1.5
Plugging these values, we have
L = ((540 * 10^-9 * 8)/2(1.5-1) = (4320 * 10^-9)/1 = 4.32 * 10^-6 m